期刊文献+

基于自编码器及超图学习的多标签特征提取 被引量:13

Multi-label Feature Selection with Autoencoders and Hypergraph Learning
下载PDF
导出
摘要 在实际应用场景中越来越多的数据具有多标签的特性,且特征维度较高,包含大量冗余信息.为提高多标签数据挖掘的效率,多标签特征提取已经成为当前研究的热点.本文采用去噪自编码器获取多标签数据特征空间的鲁棒表达,在此基础上结合超图学习理论,融合多个标签对样本间几何关系的影响以提升特征提取的性能,构建多标签数据样本间几何关系所对应超图的Laplacian矩阵,并通过Laplacian矩阵的特征值分解得到低维投影空间.实验结果证明了本文所提出的算法在分类性能上是有效可行的. In practical application scenarios, more and more data tend to be assigned with multiple labels and contain much redundant information in the high dimensional feature space. To improve the efficiency and effectiveness of multi-label data mining, multi-label data feature selection has become a hotspot. This paper utilizes denoising autoencoders to obtain a more robust version of multi-label data feature representation. Furthermore, based on hypergraph learning theory, a hypergraph Laplacian matrix corresponding to multi-label data is constructed by fusing the effects of all labels on geometrical relationship among all the samples, and then a projection space with lower dimension is obtained by conducting eigenvalue decomposition of the Laplacian matrix. Experimental results demonstrate the effectiveness and feasibility of the proposed algorithm according to its multi-label data classification performance.
出处 《自动化学报》 EI CSCD 北大核心 2016年第7期1014-1021,共8页 Acta Automatica Sinica
基金 国家自然科学基金(61300192 61472110 61573297 61379049) 中央高校基本科研项目(ZYGX2014J052) 福建省自然科学基金(2014J01256 2015J01277)资助~~
关键词 深度学习 自编码器 多标签 超图 特征提取 Deep learning, autoencoders, multi-label, hypergraph, feature selection
  • 相关文献

参考文献28

  • 1Zhang Y, Zhou Z H. Multi-label dimensionality reduction via dependence maximization. In:Proceedings of the 23rd AAAI Conference on Artificial Intelligence. Chicago, USA:AAAI Press, 2008. 1503-1505.
  • 2付忠良.多标签代价敏感分类集成学习算法[J].自动化学报,2014,40(6):1075-1085. 被引量:23
  • 3张晨光,张燕,张夏欢.最大规范化依赖性多标记半监督学习方法[J].自动化学报,2015,41(9):1577-1588. 被引量:4
  • 4Zhang M L, Zhang K. Multi-label learning by exploiting label dependency. In:Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. Washington, USA:ACM, 2010. 999-1008.
  • 5Hariharan B, Zelnik-Manor L, Vishwanathan S V N, Varma M. Large scale max-margin multi-label classification with priors. In:Proceedings of the 27th International Conference on Machine Learning. Haifa, Israel:Omnipress, 2010. 423-430.
  • 6Elisseeff A, Weston J. A kernel method for multi-labelled classification. In:Proleedings of the 2001 Advances in Neural Information Processing Systems 14. British Columbia, Canada:MIT Press, 2001. 681-687.
  • 7Sun L, Ji S W, Ye J P. Hypergraph spectral learning for multi-label classification. In:Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Las Vegas, USA:ACM, 2008. 668-676.
  • 8Zhang M L, Zhou Z H. A review on multi-label learning algorithms. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(8):1819-1837.
  • 9Gibaja E, Ventura S. A tutorial on multi-label learning. ACM Computing Surveys, 2015, 47(3):Article No. 52.
  • 10田枫,沈旭昆.基于标签集相关性学习的大规模网络图像在线标注[J].自动化学报,2014,40(8):1635-1643. 被引量:6

二级参考文献82

  • 1凌晓峰,SHENG Victor S..代价敏感分类器的比较研究(英文)[J].计算机学报,2007,30(8):1203-1212. 被引量:35
  • 2Tsoumakas G, Katakis I, Vlahavas I. Data Mining and Knowledge Discovery Handbook [M]. Berlin: Springer, 2010:667-685.
  • 3Zhang Y, Zhou Z H. Multi label dimensionality reduction via dependence maximization [C] // Proe of the 2Srd AAAI Conf on Artificial Intelligence and the 20th Innovative Applications of Artificial Intelligence Conference. Menlo Park~ American Association for Artificial Intelligence, 2008: 150:3-1505.
  • 4Li G Z, You M, Ge L, et al. Feature selection for semi- supervised multi label learning with application to gene function analysis [C] // Proc of the 2010 ACM Int Conf on Bioinformatics and Computational Biology. New York: Association for Computing Machinery, 2010:354-357.
  • 5You M Y, Liu J M, Li G Z, et al. Embedded feature selection for multi-label classification of music emotions [J]. International Journal of Computational Intelligence Systems, 2012, 5(4): 668-678.
  • 6Shao H. H G. l.iu G, et al. lahel data of inquiry diagnosis Symptom selection for multi n traditional Chinese medicioe [J]. Science China Information Sciences, 2012, 54(1): 1-13.
  • 7Lee J, I.im H, Kim D W. Approximating mutual information for multi label feature selection [J].Electronics Le'tters, 2012, 48(15): 929-930.
  • 8Zhang M I., Pena J M, Rohles V. Feature selection for muhi-lahel naive Bayes classification [J].Information Seienees, 2009, 179( 19): 3218-3229.
  • 9Park C H, Lee M.On applying linear discriminant analysis for multi-labeled problems [J]. Pattern Recognition I.etters, 2008, 29(7) : 878-887.
  • 10Yu K. Yu S, Tresp V. Multi label informed latent semantic indexing[C]/ Proc of the 28th Annual Int ACM SIGIR Conf on Research and Development in Information Retrieval. New York: ACM, 2005:258-265.

共引文献190

同被引文献78

引证文献13

二级引证文献75

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部