期刊文献+

基于多模特征深度学习的机器人抓取判别方法 被引量:34

Multimodal Features Deep Learning for Robotic Potential Grasp Recognition
下载PDF
导出
摘要 针对智能机器人抓取判别问题,研究多模特征深度学习与融合方法.该方法将测试特征分布偏离训练特征视为一类噪化,引入带稀疏约束的降噪自动编码(Denoising auto-encoding,DAE),实现网络权值学习;并以叠层融合策略,获取初始多模特征的深层抽象表达,两种手段相结合旨在提高深度网络的鲁棒性和抓取判别精确性.实验采用深度摄像机与6自由度工业机器人组建测试平台,对不同类别目标进行在线对比实验.结果表明,设计的多模特征深度学习依据人的抓取习惯,实现最优抓取判别,并且机器人成功实施抓取定位,研究方法对新目标具备良好的抓取判别能力. In this paper, a multimodal features deep learning and a fusion approach are proposed to address the problem of robotic potential grasp recognition. In our thinking, the test features which diverge from training are presented as noise-processing, then the denoising auto-encoding (DAE) and sparse constraint conditions are introduced to realize the network's weights training. Furthermore, a stacked DAE with fusion method is adopted to deal with the multimodal vision dataset for its high-level abstract expression. These two strategies aim at improving the network^s robustness and the precision of grasp recognition. A six-degree-of-freedom robotic manipulator with a stereo camera configuration is used to demonstrate the robotic potential grasp recognition. Experimental results show that the robot can optimally localizate the target by simulating human grasps, and that the proposed method is robust to a variety of new target grasp recognition.
出处 《自动化学报》 EI CSCD 北大核心 2016年第7期1022-1029,共8页 Acta Automatica Sinica
基金 国家自然科学基金(61305117) 福建省科技计划重点项目(2014H0047) 厦门市科技计划项目(3502Z20143034) 厦门理工学院高层次人才项目(YKJ15020R)资助~~
关键词 机器人抓取判别 降噪自动编码 叠层深度学习 多模特征 Robot grasping recognition, denoising auto-encoding (DAE), stacked deep learning, multimodal features
  • 相关文献

参考文献27

  • 1Paolini R, Rodriguez A, Srinivasa S S, Mason M T. A data-driven statistical framework for post-grasp manipulation. The International Journal of Robotics Research, 2014, 33(4):600-615.
  • 2Droniou A, Ivaldi S, Sigaud O. Deep unsupervised network for multimodal perception, representation and classification. Robotics and Autonomous Systems, 2015, 71(9):83-98.
  • 3高莹莹,朱维彬.深层神经网络中间层可见化建模[J].自动化学报,2015,41(9):1627-1637. 被引量:16
  • 4乔俊飞,潘广源,韩红桂.一种连续型深度信念网的设计与应用[J].自动化学报,2015,41(12):2138-2146. 被引量:21
  • 5Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks. Science, 2006, 313(5786):504-507.
  • 6Bengio Y. Learning deep architectures for AI. Foundations and TrendsoledR in Machine Learning, 2009, 2(1):1-127.
  • 7L?ngkvist M, Karlsson L, Loutfi A. A review of unsupervised feature learning and deep learning for time-series modeling. Pattern Recognition Letters, 2014, 42:11-24.
  • 8Erhan D, Bengio Y, Courville A, Manzagol P A, Vincent P, Bengio S. Why does unsupervised pre-training help deep learning? Journal of Machine Learning Research, 2010, 11:625-660.
  • 9Salakhutdinov R, Hinton G. Deep Boltzmann machines. In:Proceedings of the 12th International Conference on Artificial Intelligence and Statistics (AISTATS) 2009. Florid, USA, 2009. 448-455.
  • 10Ngiam J, Khosla A, Kim M, Nam J, Lee H, Ng A Y. Multimodal deep learning. In:Proceedings of the 28th International Conference on Machine Learning. Bellevue, USA, 2011. 689-696.

二级参考文献69

  • 1Yoo H J. Deep convolution neural networks in computer vision: a review. IEIE Transactions on Smart Processing and Computing, 2015, 4(1): 35-43.
  • 2Oquab M, Bottou L, Laptev I, Sivic J. Learning and transferring mid-level image representations using convolutional neural networks. In: Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Columbus, OH: IEEE, 2014. 1717-1724.
  • 3Zhang C, Zhang Z Y. Improving multiview face detection with multi-task deep convolutional neural networks. In: Proceedings of the 2014 IEEE Winter Conference on Applications of Computer Vision (WACV). Steamboat Springs, CO: IEEE, 2014. 1036-1041.
  • 4Sainath T N, Kingsbury B, Saon G, Soltaua H, Mohamed A, Dahlb G, Ramabhadran R. Deep convolutional neural networks for large-scale speech tasks. Neural Networks, 2015, 64: 39-48.
  • 5Deng L, Hinton G, Kingsbury B. New types of deep neural network learning for speech recognition and related applications: an overview. In: Proceedings of the 2013 International Conference on Acoustics, Speech and Signal Processing. Vancouver, Canada: IEEE, 2013. 8599-8603.
  • 6Bengio S, Heigold G. Word embeddings for speech recognition. In: Proceedings of the 15th Conference of the International Speech Communication Association, Interspeech. Singapore: ISCA, 2014. 1053-1057.
  • 7Le Q V, Mikolov T. Distributed representations of sentences and documents. In: Eprint Arxiv, 2014. 1188-1196.
  • 8Kiros R, Zemel R S, Salakhutdinov R. A multiplicative model for learning distributed text-based attribute representations. In: Eprint Arxiv, 2014. 2348-2356.
  • 9Lee C Y, Xie S N, Gallagher P, Zhang Z, Tu Z W. Deeply-supervised nets. In: Eprint Arvix, 2014. 562-570.
  • 10Weston J, Ratle F, Mobahi H, Collobert R. Deep learning via semi-supervised embedding. Neural Networks: Tricks of the Trade. Berlin Heidelberg: Springer, 2012. 639-655.

共引文献80

同被引文献195

引证文献34

二级引证文献253

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部