摘要
积分方程出现在数学物理的各种问题中,寻求其简单而又有效的解法显得很有必要.提出一种求解第二类线性Fredholm积分方程组的新解法,利用分段泰勒级数展开,通过引入两个参数得到近似解的表达式,并对近似解的收敛性和误差进行分析.通过与已有数值方法的比较,说明此方法的可行性和有效性。
Integral equations are arising in many branches of mathematical physics and they should be solved simply and effectively. In the present paper, a piecewise Taylor-series expansion method is proposed for numerically solving a linear system of Fredholm integral equations of the second kind. By introducing two parameters, the approximate solutions are given and their convergence and error estimate are analyzed. Some numerical results are carried out to illustrate the proposed method and compare with the existing ones. The obtained results reveal that the proposed method is simple and effective.
出处
《数学的实践与认识》
北大核心
2016年第13期169-176,共8页
Mathematics in Practice and Theory
基金
国家自然科学基金(11362002)
广西研究生教育创新计划资助项目(YCSZ2015030)
广西高校优秀中青年骨干教师培养工程项目
广西自然科学基金(2013GXNSFBA019021)
关键词
第二类Fredholm积分方程组
分段泰勒级数展开法
收敛性
误差估计
system of fredholm integral equations of the second kind
piecewise taylor-series expansion method
convergence
error estimate