期刊文献+

一类具阻尼项的Klein Gordon方程解的衰减行为 被引量:2

On the Asymptotic Behavior of Solution for the Klein-Gordon Equation with Damped Term
原文传递
导出
摘要 讨论了一类带阻尼项的n维Klein Gordon方程的柯西问题,观察到其线性方程的耗散结构是正则耗散型,这将意味着在对初值的正则假设下,可以得到解的最佳衰减估计.基于其相应线性方程的衰减估计和小初值条件,利用压缩映射原理,在Sobolev空间中证明了整体解的存在性和小振幅解的渐近行为. In this paper, we study the Cauchy problem for the Klein-Gordon equation with damped term in n-dimensional space. We observe that the dissipative structure of the linearized equation is of the regularity-loss type. This means that we have the optimal decay estimates of solutions under the additional regularity assumption on the initial data. Based on the decay estimates of solutions to the corresponding linear equation and smallness condition on the initial data,we prove the global existence and asymptotic of the small amplitude solution in the time-weighted Sobolev space by the contraction mapping principle.
出处 《数学的实践与认识》 北大核心 2016年第13期258-266,共9页 Mathematics in Practice and Theory
关键词 KLEIN GORDON方程 阻尼项 衰减 小振幅解 整体解 Klein-Gordon damped term decay estimates small amplitude solution global existence
  • 相关文献

参考文献10

  • 1PECHER H.Lp-Abschatzungen und klassische losungen fur nichtlineare wellengleichungen [J].Mathematische Zeitschrift,1976,150(2):159-183.
  • 2LEVINE H A.Instability and nonexistence of global solutions to nonlinear wave equations of the form Putt =-Au + F(u)[J].Transactions of the American Mathematical Society,1974,192:1-21.
  • 3PAYNE L E,SATTINGER D H.Saddle points and instability of nonlinear hyperbolic equations [J].Israel Journal of Mathematics,1975,22(3-4):273-303.
  • 4BALL J M.Finite time Blow-Up in nonlinear problems [C]//Nonlinear Evolution Equations,1978:189-205.
  • 5黄文毅,张健,陈文利.带有阻尼项的非线性Klein-Gordon方程整体解存在的最佳条件[J].四川大学学报(自然科学版),2010,47(3):425-430. 被引量:4
  • 6张宏伟,呼青英.具阻尼项的 Klein-Gordon方程组整体解的存在性、衰减性和爆破性[J].数学理论与应用,2002,22(2):34-38. 被引量:6
  • 7Wang S B,Xu H Y.On the asymptotic behavior of solution for the generalized IBq equation with hydrodynamical damped term [J].Journal of Differential Equations,2012,252(7):4243-4258.
  • 8WANG S,XU H.On the asymptotic behavior of solution for the generalized IBq equation with Stokes damped term [J].Zeitschrift fur angewandte Mathematik und Physik,2013,64(3):719-731.
  • 9CHO Y,OZAWA T.Remarks on modified improved Boussinesq equations in one space dimen- sion [J].Proceedings of the Royal Society A Mathematical Ph,2006,462:1949-1963.
  • 10WANG S, CHEN G- Small amplitude solutions of the generalized IMBq equation [J].Journal of Mathematical Analysis & Applications,2002,274(2):846-866.

二级参考文献11

  • 1陈渝芝.带双势的非线性Klein-Gordon方程驻波的不稳定性[J].四川大学学报(自然科学版),2005,42(2):253-258. 被引量:1
  • 2Pecher H.L^p-Abschtzungen and klassiche Losungen für nichtlineare wellwngeichungen[J].I Math Z,1976,150:159.
  • 3Levine H A.Instability and nonexistence of global solutions of nonlinear wave equations of the form Putt=-Au+F(u)[J].Trans Amer Math Soc,1974,192:1.
  • 4Pagne L E.Sattinger D H.Saddle points and instability of nonlinear hyperbolic equations[J].Isreal Journal of Mathematics,1975,22:273.
  • 5Ball J M.Finite time blow-up in nonlinear problems[C]∥Grandall M G.Nonlinear evolution equations.New York:Academic Press,1978.
  • 6Strass W A.Existence of Solitary waves in higher dimensions[J].Comm Math Phys,1977,55:149.
  • 7Ha J,Nakagiri S.Identification problems for the damped Klein-Gordon equations[J].J Math Anal Appl,2004,289:77.
  • 8Berestycki H,Lion P L.Nonlinear scalar field equations.I.Exitence of ground state[J].Arch Rat Mech Anal,1983,82:313.
  • 9Zhang J.Stability of standing waves for nonlinear Schrodinger equations with unbounded potentials[J].Z Angew Math Phys,2000,51:498.
  • 10Mitsuhiro Nakao,Kosuke Ono. Existence of global solutions to the Cauchy problem for the semilinear dissipative wave equations[J] 1993,Mathematische Zeitschrift(1):325~342

共引文献7

同被引文献1

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部