摘要
The similarity renormalization group is used to transform the Dirac Hamiltonian with tensor coupling into a diagonal form. The upper(lower) diagonal element becomes a Schr¨odinger-like operator with the tensor component separated from the original Hamiltonian.Based on the operator, the tensor effect of the relativistic symmetries is explored with a focus on the single-particle energy contributed by the tensor coupling. The results show that the tensor coupling destroying(improving) the spin(pseudospin) symmetry is mainly attributed to the coupling of the spin-orbit and the tensor term, which plays an opposite role in the single-particle energy for the(pseudo-) spin-aligned and spin-unaligned states and has an important influence on the shell structure and its evolution.
The similarity renormalization group is used to transform the Dirac Hamiltonian with tensor coupling into a diagonal form. The upper(lower) diagonal element becomes a Schr¨odinger-like operator with the tensor component separated from the original Hamiltonian.Based on the operator, the tensor effect of the relativistic symmetries is explored with a focus on the single-particle energy contributed by the tensor coupling. The results show that the tensor coupling destroying(improving) the spin(pseudospin) symmetry is mainly attributed to the coupling of the spin-orbit and the tensor term, which plays an opposite role in the single-particle energy for the(pseudo-) spin-aligned and spin-unaligned states and has an important influence on the shell structure and its evolution.
基金
supported by the National Natural Science Foundation of China(Grant Nos.11175001,11405040,11575002 and 11205004)
the Program for New Century Excellent Talents in University of China(Grant No.NCET-05-0558)
the Excellent Talents Cultivation Foundation of Anhui Province(Grant No.2007Z018)
the Natural Science Foundation of Anhui Province(Grant No.11040606M07)
the 211 Project of Anhui University