期刊文献+

Description of the shape coexistence in neutron-deficient ^(74,76)Kr with IBM2

Description of the shape coexistence in neutron-deficient ^(74,76)Kr with IBM2
原文传递
导出
摘要 The shape deformation and shape coexistence in ^(74,76) Kr isotopes are investigated within the framework of the proton-neutron interacting boson model(IBM2). By considering the relative energy of the d proton boson to be different from that of the neutron boson, the low-lying energy spectrum is in good agreement with experimental results both qualitatively and quantitatively. In particular, the low-lying 0_2^+ states associated with the shape-coexistence phenomenon are reproduced quite well. The calculated key sensitive quantities of B(E2) transition branch ratios are fairly consistent with the experimental data except for R_4. The predicated deformation parameter is very similar for the ground states in ^(74)Kr and ^(76)Kr, showing good agreement with the experimental result,and the calculated deformation parameter for the second 0^+ state in ^(74)Kr is close to the experimental data. The calculated results of the triaxiality parameter indicated an almost purely prolate shape for the ground state of ^(76)Kr and a mostly prolate shape with a little triaxiality for the ground state of ^(74)Kr. The calculations also show an oblate triaxial shape for the second 0^+ state in ^(76)Kr and maximum triaxiality for the second 0^+ state in ^(74)Kr. These results confirm the importance of the triaxial deformation for the description of such shape coexistence. The shape deformation and shape coexistence in ^(74,76) Kr isotopes are investigated within the framework of the proton-neutron interacting boson model(IBM2). By considering the relative energy of the d proton boson to be different from that of the neutron boson, the low-lying energy spectrum is in good agreement with experimental results both qualitatively and quantitatively. In particular, the low-lying 0_2~+ states associated with the shape-coexistence phenomenon are reproduced quite well. The calculated key sensitive quantities of B(E2) transition branch ratios are fairly consistent with the experimental data except for R_4. The predicated deformation parameter is very similar for the ground states in ^(74)Kr and ^(76)Kr, showing good agreement with the experimental result,and the calculated deformation parameter for the second 0~+ state in ^(74)Kr is close to the experimental data. The calculated results of the triaxiality parameter indicated an almost purely prolate shape for the ground state of ^(76)Kr and a mostly prolate shape with a little triaxiality for the ground state of ^(74)Kr. The calculations also show an oblate triaxial shape for the second 0~+ state in ^(76)Kr and maximum triaxiality for the second 0~+ state in ^(74)Kr. These results confirm the importance of the triaxial deformation for the description of such shape coexistence.
机构地区 Department of Physics
出处 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2016年第8期43-49,共7页 中国科学:物理学、力学、天文学(英文版)
基金 supported by the National Natural Science Foundation of China (Grant Nos. 11475062, 11547312 and 11147148)
关键词 ^(74)Kr ^(76)Kr shape coexistence low-ling energy states IBM2 形状共存 缺中子 计算结果 实验数据 氪同位素 变形参数 三维参数 玻色子
  • 相关文献

参考文献39

  • 1A. Poves, J. Phys. G-Nucl. Part. Phys. 43, 020401 (2016).
  • 2K. Heyde, and J. L. Wood, Rev. Mod. Phys. 83, 1467 (2011).
  • 3J. E. Garcia-ramos, and K. Heyde, Phys. Rev. C 92, 034309 (2015).
  • 4C. J. Prokop, B. P. Crider, S. N. Liddick, A. D. Ayangeakaa, M. P. Car- penter, J. J. Carroll, J. Chen, C. J. Chiara, H. M. David, A. C. Dombos, S. Go, J. Harker, R. V. F. Janssens, N. Larson, T. Lauritsen, R. Lewis, S. J. Quinn, F. Recchia, D. Seweryniak, A. Spyrou, S. Suchyta, W. B. Waiters, and S. Zhu, Phys. Rev. C 92, 061302 (2015).
  • 5J. Park, A. B. Garnsworthy, R. Krticken, C. Andreoiu, G. C. Ball, P. C. Bender, A. Chester, A. Close, P. Finlay, P. E. Garrett, J. Glister, G. Hackman, B. Hadinia, K. G. Leach, E. T. Rand, S. Sjue, K. Starosta, C. E. Svensson, and E. Tardiff, Phys. Rev. C 93, 014315 (2016).
  • 6Z. J. Bai, X. M. Fu, C. E Jiao, and E R. Xu, Chin. Phys. C 39, 094101 (2015).
  • 7Y. X. Liu, S. Y. Yu, and Y. Sun, Sci. China-Phys. Mech. Astron. 58, 112003 (2015).
  • 8N. Bree, K. Wrzosek-Lipska, A. Petts, A. Andreyev, B. Bastin, M. Ben- der, A. Blazhev, B. Bruyneel, P. A. Butler, J. Butterworth, M. P. Car- penter, J. Cederk~ill, E. C16ment, T. E. Cocolios, A. Deacon, J. Diriken, A. Ekstr6m, C. Fitzpatrick, L. M. Fraile, C. Fransen, S. J. Freeman, L. P. Gaffney, J. E. Garcia-ramos, K. Geibel, R. Gemh/iuser, T. Grahn, M. Guttormsen, B. Hadinia, K. Hadyfiska-klek, M. Hass, P. H. Heenen, R. D. Herzberg, H. Hess, K. Heyde, M. Huyse, O. Ivanov, D. G. Jenkins, R. Julin, N. Kesteloot, T. Kr611, R. Kriicken, A. C. Larsen, R. Lutter, P. Marley, P. J. Napiorkowski, R. Orlandi, R. D. Page, J. Pakarinen, N. Patronis, P. J. Peura, E. Piselli, P. Rahkila, E. Rapisarda, P. Reiter, A. P. Robinson, M. Scheck, S. Siem, K. S. Chakkal, J. E Smith, J. Srebrny, I. Stefanescu, G. M. Tveten, P. Van Duppen, J. Van de Walle, D. Voulot, N. Wart, E Wenander, A. Wiens, J. L. Wood, and M. Zielirlska, Phys. Rev. Lett. 112, 162701 (2014).
  • 9G. X. Dong, X. B. Wang, and S. Y. Yu, Sci. China-Phys. Mech. Astron. 58, 112004 (2015).
  • 10A. G6rgen, and W. Korten, J. Phys. G-Nucl. Part. Phys. 43, 024002 (2016).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部