期刊文献+

混合云环境下基于失效感知的资源调度策略 被引量:2

Failure-Aware Resource Scheduling Policy for Hybrid Cloud
原文传递
导出
摘要 针对混合云的功能和复杂度逐渐增大而导致资源失效率增高的问题,提出一种提高混合云资源调度成功率的调度算法.首先,根据私有云资源失效规律特点,建立资源有效利用率模型和任务稳定性模型.然后综合考虑公共云和私有云的特点,建立基于失效感知的两层资源调度模型(2L-FARS),并使用建立的ST—LLF(任务稳定性阀值控制的最低松弛度优先调度算法)和DQPA(双队列资源提供算法)调度算法分别完成两层资源调度.最后使用failure traces和workload traces,对提出的策略进行验证.实验结果表明,该策略有效地减少了任务截止期违约率,并且在提高资源利用率的同时,一定程度上降低了任务执行总费用. Aiming at increasing opportunities for resource failure caused by increasing function in hybrid cloud, the task stability model was constructed according to the features of failure. In order to evaluate resource utilization of private cloud, the effective utilization model of resources was built. In order to simultaneously ensure task stability and resource utilization of private cloud, the two layers resource scheduling mode was proposed based on failure aware. It included a hybrid cloud and private cloud scheduler, using the stability threshold--least laxity first task scheduling algorithm (ST-LLF) and dual queue provision algorithm (DQPA) scheduling algorithm respectively. Finally, using the real failure traces and workload traces, we evaluated the proposed resource provision policy to demonstrate their performance, resource utilization and violation rate. Experimental results show that the strategy effectively increases the resource utilization and reduces the violation rate.
出处 《河南大学学报(自然科学版)》 CAS 2016年第4期462-471,共10页 Journal of Henan University:Natural Science
基金 国家自然科学基金项目(61402149) 河南省科技发展计划项目(152102310381) 河南省教育厅科学技术研究重点项目(13B520923 15A520117)
关键词 混合云 截止期约束 资源失效 资源调度 负载模型 hybrid cloud deadline constrain resource failure resource provision workload model
  • 相关文献

参考文献2

二级参考文献29

  • 1韩建军,李庆华,Abbas A.Essa.基于软件容错的动态实时调度算法[J].小型微型计算机系统,2005,26(4):658-661. 被引量:1
  • 2Rochwerger B, Breitgand D, Levy E et al. The Reservoir model and architecture for open federated cloud computing. IBM Journal of Research and Development, 2009,53(4) : 1-17.
  • 3Daniel Nurmi, Rich Wolski, Chris Grzegorczyk et al. The eucalyptus open-source cloud computing system//Proceedings of the 2009 9th IEEE/ACM International Symposium on Cluster Computing and the Grid. 2009:124-131.
  • 4Armbrust M, Fox A, Griffith R et al. Above the clouds: A berkeley view of cloud computing. UC Berkley, USA: Technical Report No. UCB/EECS-2009-28, 2009:1-25.
  • 5Vaquero L M, Rodero-Merino L, Caceres Jet al. A break in the clouds: Towards a cloud definition. ACM SIGCOMM Computer Communication Review, 2009, 39(1): 50-55.
  • 6Irwin D, Chase J S, Grit L et al. Sharing networked resources with brokered leases//Proceedings of the USENIX Technical Conference. Boston, MA, USA, 2006:199-212.
  • 7Padala P, Shin K G, Zhu Xiao-Yun et al. Adaptive control of virtualized resources in utility computing environments//Pro ceedings of the 2nd ACM SIGOPS/EuroSys European Conference on Computer Systems 2007. Lisbon, Portugal, 2007: 289-302.
  • 8Schroeder B, Gibson G A. A large-scale study of failures in high-performance computing systems//Proceedings of DSN2006. Philadelphia, Pennsylvania, USA, 2006:249-258.
  • 9Heath T, Martin R P, Nguyen T D. Improving cluster avail- ability using workstation validation//Proeeedings of the ACM SIGMETRICS. Marina Del Rey, California, USA, 2002. 217-227.
  • 10Tai A T, Tso K S, Sanders W H et al. Chau: A performability-oriented software rejuvenation framework for distributed applicatioas//Proceedings of the 35th DSN 2005. Yokohama, Japan, 2005.570-579.

共引文献70

同被引文献19

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部