期刊文献+

低逾渗MWCNTs-CB/UHMWPE导电复合材料的制备及性能 被引量:6

Preparation and Properties of MWCNTs-CB/UHMWPE of Low Percolation Conductive Composites
下载PDF
导出
摘要 采用溶液法及机械共混法分别制备了均匀结构的炭黑(CB)/超高分子量聚乙烯(UHMWPE)及隔离结构的多壁碳纳米管(MWCNTs)-CB/UHMWPE复合薄膜。扫描电镜分析显示,虽然大部分CB均匀分散于UHMWPE基体中,但依然存在明显的局部团聚,而隔离结构中的MWCNTs-CB分布于UHMWPE界面间,更易形成导电通道。导电测试结果表明,复合材料的导电逾渗值由均匀分布的4.91%(体积分数)下降到隔离结构的0.42%。MWCNTs的加入完善了CB间的导电网络,使复合材料的逾渗值进一步下降,当CB∶MWCNTs=15∶1时,复合薄膜的逾渗值由0.42%(体积分数)下降到0.24%,然而混合填料中MWCNTs含量的进一步增加几乎对逾渗值没有影响。力学性能研究表明,隔离型复合材料的拉伸强度和断裂伸长率随填充剂含量的增加呈现出先上升后下降的趋势。 Carbon black(CB)/ultrahigh molecular weight polyethylene(UHMWPE)with uniform structure,and multi-walled carbon nanotubes(MWCNTs)-CB/UHMWPE composite film with segregated structure were prepared by solution method and mechanical blending,respectively.Scanning electron microscopy(SEM)results for composites fractured surface show that although most of CB are homogeneously dispersed in the UHMWPE matrix,but there is still significant local agglomeration,and the MWCNTs-CB in segregated structure are located at the UHMWPE interface.Compared to uniformed CB/UHMWPE composites,the conductive percolation threshold of segregated CB/UHMWPE composites is decreased from 4.91%to 0.42%,due to the clustered distribution of filler in the interface between UHMWPE particles,which is easier to form a conductive path.Adding a small amount of MWCNTs in composite materials can form more complete conductive network and make percolation value significantly decrease.As only CB∶MWCNTs is 15∶1,the percolation threshold of CB/UHMWPE composites with segregated structure can decrease from 0.42% to 0.24%.Meanwhile,it does not has a significantly influence on percolation threshold with the increase of MWCNTs content.The mechanical properties of the composites first increase and then decrease with increasing of fillers content.
出处 《高分子材料科学与工程》 EI CAS CSCD 北大核心 2016年第7期116-120,共5页 Polymer Materials Science & Engineering
基金 国家自然科学基金资助项目(51273161) 高分子材料工程国家重点实验室开放课题(sklpme2014-4-27)
关键词 炭黑 碳纳米管 超高分子量聚乙烯 导电网络 逾渗值 carbon black carbon nanotubes ultra-high molecular weight polyethylene conductive network percolation value
  • 相关文献

参考文献15

  • 1Balogun Y A, Buchanan R C. Enhanced percolative properties from partial solubility dispersion of filler phase in conducting polymer composites (CPCs)[J]. Compos. Sci. Teehnol. , 2010, 70: 892-900.
  • 2Al-Saleh M H, Sundararaj U. A review of vapor grown carbon nanofiber/polymer conductive composites[J]. Carbon, 2009, 47: 2- 22.
  • 3Mamunya Y, Boudenne A, Leboyka N, et al. Electrical and thermophysical behaviour of PVC-MWCNT nanocomposites [ J ]. Compos. Sci. Teehnol. , 2008, 68: 1981-1988.
  • 4杨建锋,季铁正,张教强,郑星卓,谷敬凯,李萍.石墨烯/超高分子量聚乙烯复合材料的导电性能[J].高分子材料科学与工程,2013,29(12):48-51. 被引量:6
  • 5Wang J. Carbon-nanotube based electrochemical biosensors: a review [J]. Eleetroanalysis, 2005, 17: 7-14.
  • 6Pang H, Chen C, Zhang Y C, et al. The effect of electric field, annealing temperature and filler loading on the percolation threshold of polystyrene containing carbon nanotubes and graphene nanosheets [J]. Carbon, 2011, 49: 1980-1988.
  • 7李斌,张学勇,付朝阳,王鹏宇,全旺贤.改性材料对炭黑填充压敏硅橡胶导电性能的影响[J].高分子材料科学与工程,2014,30(11):92-97. 被引量:4
  • 8Ghislandi M, Tkalya E, Schillinger S, et al. High performance graphene- and MWCNTs-based PS/PPO composites obtained via organic solvent dispersion [J]. Compos. Sci. Technol., 2013, 80: 16-22.
  • 9Kim K S, Park S J. High electrochemical performance of carbon black-bonded carbon nanotubes for electrode materials [ J ]. Mater. Res. Bull. ,2012, 47: 4146-4150.
  • 10Lonergan M C, Severin E J, Doleman B J, et al. Arraybased vapor sensing using chemically sensitive, carbon black-polymer resistors [J]. Chem. Mater., 1996, 8: 298-312.

二级参考文献19

  • 1汤浩,陈欣方,罗云霞.复合型导电高分子材料导电机理研究及电阻率计算[J].高分子材料科学与工程,1996,12(2):1-7. 被引量:54
  • 2梁基照,杨铨铨.导电高分子复合材料逾渗阈值的预测[J].华南理工大学学报(自然科学版),2007,35(8):80-82. 被引量:15
  • 3Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin cartxm films[J]. Science, 2004, 306(5696) : 666- 669.
  • 4Reina A, Jia X F, Ho J. et al. Ltrge area, few-layer graphene films on arbitrary substrates by chemical vapor deposition[J]. Nano Lett. , 2009, 9(1): 30-35.
  • 5Kim K S, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes [J]. Nature,2009, 457(7230): 706-710.
  • 6Smter P W, Flege J I, Sutter E A. Epitaxial greLphene on ruthenium [J]. Nat. Mater., 2008, 7(5): 406-411.
  • 7Park S, Ruoff R S. Chemical methods for the production of graphenes[J]. Nat. Nanotechnol. , 2009, 4(4): 217-224.
  • 8Ye J, Zhang H, Chen Y, et al. Supercapacitors based on low- temperature partially exfoliated and reduced graphite oxide [ J ]. Journal of Power Sources, 2012, 212: 105-110.
  • 9El Achaby M, Qaiss A. Processing and properties of polyethylene reinforced by graphene nanosheets and carbon nanotubes [ J ]. Materials & Design, 2013, 44: 81-89.
  • 10Liu Z, Liu J Q, Cui L, et al. Preparation of graphene/polymer composites by direct exfoliation of graphite in functionalised block copolymer matrix[J]. Carbon, 2013, 51: 148-155.

共引文献8

同被引文献36

引证文献6

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部