期刊文献+

High-precision RCS measurement of aircraft's weak scattering source 被引量:7

High-precision RCS measurement of aircraft's weak scattering source
原文传递
导出
摘要 The radar cross section (RCS) of weak scattering source on the surface of an aircraft is usually less than -40 dBsm. How to accurately measure the RCS characteristics of weak scattering source is a technical challenge for the aircraft's RCS measurement. This paper proposes separating and extracting the two-dimensional (2D) reflectivity distribution of the weak scattering source with the microwave imaging algorithm and spectral transform so as to enhance its measurement preci- sion. Firstly, we performed the 2D microwave imaging of the target and then used the 2D gating function to separate and extract the reflectivity distribution of the weak scattering source. Secondly, we carried out the spectral transform of the reflectivity distribution and eventually obtained the RCS of the weak scattering source through calibration. The prototype experimental results and their analysis show that the measurement method is effective. The experiments on an aircraft's low-scattering conformal antenna verify that the measurement method can eliminate the clutter on the surface of aircraft. The precision of measuring a -40 dBsm target is 3 5 dB better than the existing RCS measurement methods. The measurement method can more accurately obtain the weak scattering source's RCS characteristics. The radar cross section (RCS) of weak scattering source on the surface of an aircraft is usually less than -40 dBsm. How to accurately measure the RCS characteristics of weak scattering source is a technical challenge for the aircraft's RCS measurement. This paper proposes separating and extracting the two-dimensional (2D) reflectivity distribution of the weak scattering source with the microwave imaging algorithm and spectral transform so as to enhance its measurement preci- sion. Firstly, we performed the 2D microwave imaging of the target and then used the 2D gating function to separate and extract the reflectivity distribution of the weak scattering source. Secondly, we carried out the spectral transform of the reflectivity distribution and eventually obtained the RCS of the weak scattering source through calibration. The prototype experimental results and their analysis show that the measurement method is effective. The experiments on an aircraft's low-scattering conformal antenna verify that the measurement method can eliminate the clutter on the surface of aircraft. The precision of measuring a -40 dBsm target is 3 5 dB better than the existing RCS measurement methods. The measurement method can more accurately obtain the weak scattering source's RCS characteristics.
出处 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2016年第3期772-778,共7页 中国航空学报(英文版)
基金 co-supported by the National Natural Science Foundation of China(Nos.61201320,61371023) the Fundamental Research Funds for the Central Universities of China(No.3102014JCQ01103)
关键词 Microwave imaging RCS measurement Reftectivity distributionSpectral transform Weak scattering source Microwave imaging RCS measurement Reftectivity distributionSpectral transform Weak scattering source
  • 相关文献

参考文献3

二级参考文献41

共引文献25

同被引文献75

引证文献7

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部