期刊文献+

疏水表面冷凝的毛细力微操作液滴动态分配 被引量:2

Dynamic distribution of capillary microdroplet using water condensation on hydrophobic surface
下载PDF
导出
摘要 为实现毛细力操作液滴获取,提出基于疏水表面冷凝的毛细力微操作液滴分配方法,研究微对象转移进程中(拾取-释放)所需的操作液滴条件.针对操作液滴分配任务,建立液桥拉伸进程中的模型.基于VOF(volume of fluid)方法,建立平面-平面、平面-球面配置模式下的动态模型,分析操作液滴的动态获取过程.仿真结果表明:接触角和提升速度均对辅助液滴的获取率和断裂距离起到重要作用,液滴趋向于接触角小的端面,提升速度可促使液滴在两平面均分.液桥体积对辅助液滴获取率的影响较小,液桥断裂距离与液桥体积成正比变化.实验研究了平面-平面、平面-球面配置下的操作液滴动态分配进程,验证了所提出方法的可行性. A microdroplet distribution method based on water condensation on hydrophobic surface is presented to obtain micromanipulation droplet for capillary gripping. Accordingly, the droplet condition required in micro-objects transfer ( pick-and-place ) is investigated. Model of liquid bridge stretching is established during microdroplet dispensing. Two configurations ( plane-plane, plane-sphere ) of dynamic liquid bridge is modeled using VOF ( Volume of Fluid ) method to analyze the acquisition process of capillary micromanipulation droplet. Simulation results demonstrate that the contact angle and drawing velocity have a significant influence on the acquisition fraction of auxiliary droplet and rupture distance. The initial liquid bridge moves toward the surface with small contact angle after the formed liquid bridge rupture. Micromanipulation probes with big drawing velocity enable manipulation droplet to split on two surfaces equally. The impact of droplet volume on the acquisition fraction of auxiliary droplet is relatively small, but is proportional to the rupture distance. Configurations ( plane-plane, plane-sphere) of dynamic liquid bridge are experimental investigated to verify feasibility of the proposed method.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2016年第7期14-19,共6页 Journal of Harbin Institute of Technology
基金 国家自然科学基金创新研究群体科学基金(51521003) 机器人技术与系统国家重点实验室(哈尔滨工业大学)自主研究课题(SKLRS201602C)
关键词 微操作 毛细力 液滴 动态液桥 分配 micromanipulation capillary droplet dynamic liquid bridge dispensing
  • 相关文献

参考文献16

  • 1WASON J D, WEN J T, GORMAN J J, et al.Automated multiprobe microassembly using vision feedback[J].IEEE Transactions on Robotics, 2,8(5): 1090-1103.
  • 2LI X, CHEAH C C, HU S, et al.Dynamic trapping and manipulation of biological cells with optical tweezers[J].Automatica, 3,9(6): 1614-1625.
  • 3CHEN Haoyao, SUN Dong.Moving groups of microparticles into array with a robot-tweezers manipulation system[J].IEEE Transactions on Robotics, 2,8(5): 1069-1080.
  • 4LENDERS C, GAUTHIER M, COJAN R, et al.Three-DOF microrobotic platform based on capillary actuation[J].IEEE Transactions on Robotics, 2,8(5): 1157-1161.
  • 5DOPFER D, PALZER S, HEINRICH S, et al.Adhesion mechanisms between water soluble particles[J].Powder technology, 3,8: 35-49.
  • 6FANTONI G, HANSEN H N, SANTOCHI M.A new capillary gripper for mini and micro parts[J].CIRP Annals-Manufacturing Technology, 3,2(1): 17-20.
  • 7AL A A, JAGTIANI A, VASUDEV A, et al.Soft microgripping using ionic liquids for high temperature and vacuum applications[J].Journal of Micromechanics and Microengineering, 1,1(12): 125025-125032.
  • 8VASUDEV A, ZHE J.A capillary microgripper based on electrowetting[J].Applied Physics Letters, 2008, 93(10): 103503-103505.
  • 9LUTFURAKHMANOV A, LOKEN G K, SCHULZ D L, et al.Capillary-based liquid microdroplet deposition[J].Applied Physics Letters, 0,7(12): 124107-124109.
  • 10LAMBERT P, SEIGNEUR F, KOELEMEIJER S, et al.A case study of surface tension gripping: the watch bearing[J].Journal of Micromechanics and Microengineering, 6,6(7): 1267-1276.

二级参考文献21

  • 1Nah S K, Zhong Z W. A microgripper using piezoelectric actu- ation for micro-object manipulation[J]. Sensors and Actuators A: Physical, 2007, 133(1): 218-224.
  • 2Chen T, Sun L N, Chen L G, et al. A hybrid-type electrostat- ically driven microgripper with an integrated vacuum tool[J]. Sensors and Actuators A: Physical, 2010, 158(2): 320-327.
  • 3Chu J K, Zhang R, Chen Z E A novel SU-8 electrothermal mi- crogripper based on the type synthesis of the kinematic chain method and the stiffness matrix method[J]. Journal of Microme- chanics and Microengineering, 2011, 21 (5): No.054030.
  • 4Kim D H, Lee M G, Kim B, et al. A superelastic alloy mi- crogripper with embedded electromagnetic actuators and piezo- electric force sensors: A numerical and experimental study[J]. Smart Materials and Structures, 2005, 14(6): 1265-1272.
  • 5Kohl M, Krevet B, Just E. SMA microgripper system[J]. Sen- sors and Actuators A: Physical, 2002, 97-98: 646-652.
  • 6Ford S, Macias G, Lumia R. Single active finger IPMC mi- crogripper[J]. Smart Materials and Structures, 2015, 24(2): No.025015.
  • 7Rong W B, Fan Z H, Wang L E et al. A vacuum microgripping tool with integrated vibration releasing capability[J]. Review of Scientific Instruments, 2014, 85(8): No.085002.
  • 8Feddema J T, Xavier E Brown R. Micro-assembly planning with van der Waals force[J]. Journal of Micromechatronics, 2001, 1(2): 139-153.
  • 9Al Amin A, Jagtiani A, Vasudev A, et al. Soft microgripping us- ing ionic liquids for high temperature and vacuum applications [J]. Journal of Micromechanics and Microengineering, 2011, 21(12): No.125025.
  • 10Vasudev A, Zhe J. A capillary microgripper based on electrowetting[J]. Applied Physics Letters, 2008, 93(10): No. 103503.

共引文献1

同被引文献6

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部