期刊文献+

张拉整体三棱柱构型和结构稳定性分析 被引量:11

Analysis of configuration and structural stability of 3-bar tensegrity prism
下载PDF
导出
摘要 为深入研究三杆张拉整体基本单元结构的构建方法和稳定性判定问题.提出以结构外形几何参数为基础,应用节点广义坐标矢量矩阵、构件矢量矩阵和连接矩阵建立数学模型,并用MATLAB编程实现单元结构的自动构型.引入构件力密度标量,建立系统力平衡矢量矩阵方程,分析结构的稳定性,把非线性系统平衡问题转化为线性系统平衡问题.通过分析平衡矩阵,对结构系统进行分类,筛选出能够构建起稳定结构的几何参数的变化范围.本研究方法具有通用性,适用于其它张拉整体结构形式的构型和稳定性分析. This paper focuses on the problem that how to build up basic 3 bars tensegrity unit structure and how to judge its stability. Based on the outer shape geometry parameters, using node general coordinates, member vector matrices, connectivity matrices, the mathematical model of basic 3 bars tensegrity unit is presented. To build up structures automatically, a program is established in the MATLAB software by which one can build any basic 3 bars tensegrity structure under the given outer shape geometry parameters. Then, the scalar parameters force densities are introduced. With the connectivity matrices and node general coordinates, the equilibrium matrix function is built. It is linear about force densities. The balance matrix specifies the given system as one of four kinds of structures, and the stable structure can be chosen out.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2016年第7期82-87,共6页 Journal of Harbin Institute of Technology
基金 黑龙江省自然科学基金(11202128) 机器人技术与系统国家重点实验室(HIT)开放研究项目(SKLRS(HIT)2014ZD05 2015MS01) 哈尔滨工程大学中央高校基本科研业务费专项资金(HEUCF160702)
关键词 张拉整体棱柱 节点矢量矩阵 力密度 平衡矩阵 自应力稳定结构 tensegrity prism node vector matrix force density equilibrium matrix self-stress stable structure
  • 相关文献

参考文献15

  • 1ZHANG J Y, GUEST S D, CONNELLY R, et al. Dihedral ' star' tensegfity structures [J]. International Journal of Solids and Structures, 2010, 47(1) : 1-9.
  • 2De OLIVEIRA M C, SKELTON R E. A new topology of tensegrity towers with uniform force distribution [C]// Proceedings of the society of photo-optical instrumentation engineers (SPIE). San Diego: SPIE, 2005: 198-208.
  • 3De OLIVEIRA M C, SKELTON R E, CHAN W L. Minimum mass design qff tensegrity towers and plates [C]// IEEE Conference on Decision and Control. New York: IEEE, 2006: 2314-2319.
  • 4MASIC M, SKELTON R E. Optimization of class- 2 tensegrity towers [C]//Proceedings of the society of photo- optical instrumentation engineers (SPIE). San Diego: SPIE, 2004: 163-174.
  • 5PELLEGRINO S, CALLADINE C R. Matrix analysis of statically and kinematically indeterminate frameworks [J]. International Journal of Solids and Structures, 1986, 22(4) : 409-428.
  • 6PELLEGRINO S. Analysis of prestressed mechanisms [J]. International Journal of Solids and Structures, 1990, 26(12) : 1329-1350.
  • 7PELLEGRINO S. Strnctural computations with the singular value decomposition of the equihbrium matrix [J]. International Journal of Solids and Structures, 1993, 30(21) : 3025-3035.
  • 8GUEST S D. The stiffness of prestressed frameworks: A unifying approach [J]. International Journal of Solids and Structures, 2006, 43 (3/4) : 842- 854.
  • 9GUEST S D. The stiffness of tensegrity structures [J]. IMA Journal of Applied Mathematics, 2011, 76(1SI) : 57-66.
  • 10LAZOPULOS K A. Stability of an elastic cytoskeletal tensegrity model [J]. International Journal of Solids and Structures, 2005, 4201/12) : 3459-3469.

二级参考文献14

  • 1钱若军,沈祖炎,夏绍华.索穹顶结构[J].空间结构,1995,1(3):1-7. 被引量:3
  • 2罗尧治,董石麟.索杆张力结构的计算机分析程序CSTS[J].空间结构,2000,6(2):56-63. 被引量:9
  • 3刘锡良,陈志华.一种新型空间结构——张拉整体体系[J].土木工程学报,1995,28(4):51-57. 被引量:29
  • 4Maxwell J C.On the calculation of the equilibrium and stiffness of frames[C].England:University of Cambridge Press,1890.
  • 5Calladine C R.Buckminster fuller's "tensegrity" structures and clerk Maxwell's rules for the construction of stiff frames[J].Int.J.Solids Structures,1978,14:161~172.
  • 6Pellegrino S.Analysis of pre-stressed mechanisms[J].Int.J.Solids Structures,1990,26(12):1329~1350.
  • 7Pellegrino S.Structure computations with the singular value decomposition of the equilibrium matrix[J].Int.J.Solids Structures,1993,30(21):3025~3035.
  • 8Pellegrino S,Calladine C R.Matrix analysis of statically and kinematically indeterminate frameworks[J].Int.J.Solids Structures,1986,22(4):409~428.
  • 9Kuznetsov E N.Underconstrained structural systems[J].Int.J.Solids Structures,1988,24(2):153~163.
  • 10Tarnai T,Szabó J.On the exact equation of inextensional,kinematically indeterminate assemblies[J].Computers and Structures,2000,75:145~155.

共引文献21

同被引文献48

引证文献11

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部