期刊文献+

齿轮裂纹程度识别的有序分类算法 被引量:3

Gear crack level identification using ordinal classification
下载PDF
导出
摘要 为识别齿轮裂纹的严重程度信息,提出一种基于有序分类的故障严重程度识别方法.将故障严重程度识别问题视为不同严重程度之间存在序结构,并且部分特征和故障严重程度之间存在单调依赖关系的有序分类问题,从有序分类出发,建立有序分类的故障严重程度识别模型.研究故障严重程度识别中的特征评价和特征选择问题,利用排序互信息指标区分原始特征集中的单调特征和非单调特征,提出单调特征和非单调特征混合存在情况下的有序分类特征选择算法.齿轮裂纹程度识别实验结果表明:提出的有序分类特征选择算法可以降低特征空间维数,能选择出分类能力强的故障特征子集,提高了故障严重程度识别的准确性. A fault severity level identification method based on ordinal classification is proposed to identify the gear crack levels. The fault level identification is regarded as ordinal classification in which there are ordinal structures between different severity levels and some features have monotonic relationship with the severity levels. The feature evaluation and feature selection for fault severity level identification based on ordinal classification are discussed. Ranking mutual information is utilized to distinguish monotonic features and non-monotonic features of the original feature set, and then a feature selection algorithm is designed for ordinal classification when monotonic features are mixed with non-monotonic features. The experimental results demonstrate that the designed algorithm can select the features with high classification ability for classifying the crack fault severity. A fault severity recognition model is constructed using ordinal classification. The proposed feature selection algorithm can reduce the dimension of feature space, select the features with strong classification ability and improve the accuracy of fault severity level identification.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2016年第7期156-162,共7页 Journal of Harbin Institute of Technology
基金 福建省自然科学基金(2015J01278)
关键词 有序分类 特征选择 故障诊断 严重程度 齿轮裂纹程度识别 ordinal classification feature selection fault diagnosis severity level gear crack level identification
  • 相关文献

参考文献16

  • 1FRANK E, HALL M. A simple approach to ordinal classification [C]//Proc Europ Conf on Machine Learning. Beilin: Springer, 2301: 145-156.
  • 2KOTLOWSKI W, DEMBCZYNSKI K, GRECO S, et al. Stochastic dominance-based rough set model for ordinal classification[J]. Information Sciences, 2008, 178 ( 21 ) : 4019-4037.
  • 3BLASZCZYNSKI J, SLOWINSKI R, SZELAG M. Probabilistic rough set approaches to ordinal classification with monotohicity constraints [J].Computational Intelligence for Knowledge- Based Systems Design, 2010, 6178: 99-108.
  • 4曾庆虎,邱静,刘冠军.基于小波相关特征尺度熵的HSMM设备退化状态识别与故障预测方法[J].仪器仪表学报,2008,29(12):2559-2564. 被引量:16
  • 5LEI Yaguo, ZUO M J. Gear crack level identification based on weighted K nearest neighbor classification algorithm [J]. Mechanical Systems and Signal Processing, 2009, 23 (5) : 1535-1547.
  • 6LI Zhixiong, YAN Xinping, JIANG Yu, et al. A new data mining approach for gear crack level identification based on manifold learning[J]. Mechanics, 2012, 18(1): 29-34.
  • 7CHENG Zhe, HU Niaoqing, ZHANG Xiaofei. Crack level estimation approach for planetary gearbox based on simulation signal and GRA [J]. Journal of Sound and Vibration, 2012, 331(26): 5853-5863.
  • 8ZHAO Xiaomin, ZUO M J, LIU Zhiliang, et al. Diagnosis of artificially created surface damage levels of planet gear teeth using ordinal ranking [J]. Measurement, 2013, 45(1) : 132-144.
  • 9WU Jianing, YAN Shaoze. Fault severity evaluation and improvement design for mechanical systems using the fault injection technique and gini concordance measure [J]. Mathematical Problems in Engineering, 2014, 2014 ( 1 ) : 759-765.
  • 10JIANG Fan, LI Wei, WANG Zhongqiu, et al. Fault severity estimation of rotating machinery based on residual signals [J]. Advances in Mechanical Engineering, 2015, 15(11) :1067-1077.

二级参考文献13

  • 1QIU H, LEE J, LIN J, et al. Robust performance degradation assessment methods for enhanced rolling element bearing prognostics[ J]. Advanced Engineering Informatics, 2003,17 : 127-140.
  • 2ZHANG X D, XU R, KWAN C, et al. An integrated approach to bearing fault diagnostics and prognostics [ C ]. 2005 American Control Conference, 2005:2750-2755.
  • 3RABINER L R. A tutorial on hidden Markov models and selected applications in speech recognition [ J ]. Proceedings of the IEEE, 1989,77(2) :257-286.
  • 4KWAN C, ZHANG X, XU R, et al. A novel approach to fault diagnosis and prognostics [ C ]. Proceedings ICRA' 03. IEEE International Conference on Robotics and Automation. 1 (3), September 2003:604-609.
  • 5CHINNAM R B, BARUAH P. Autonomous diagnostics and prognostics through competitive learning driven HMM-based clustering[ C]. Proc. of the Internal Joint Conf on Neural Networks, July 2003,2466-2471.
  • 6CAMCI F, CHINNAM R B. Dynamic Bayesian networks for machine diagnostics:hierarchical hidden Markov models vs. competitive learning [ C ]. Proc of the Internal Joint Conf. on Neural Networks, Montreal, Canada, July 31-August 4, 2005 : 1752-1757.
  • 7DONG M, HE D. Hidden semi-Markov models for machinery health diagnosis and prognosis[ J ]. Trans. NAMRI/SMEXXXII, 2004,32 : 199-206.
  • 8DONG M, HE D. A segmental hidden semi-Markov model (HSMM)-based diagnostics and prognostics framework and methodology[ J]. Mechanical System and Signal Processing, 2007,21:2248-2266.
  • 9PAN Q, ZHANG L, DAI G ZH, et al. Two de-noising methods by wavelet transform [ J ].IEEE Trans. on Signal Processing, 1999,47 ( 2 ) : 3401-3406.
  • 10QIU J, ZHANG CH, SETH B B, et al. Damage mechanics approach for bearing lifetime prognostics [ J]. Mechanical Systems and Signal Processing, 2002,16 (5) : 817-829.

共引文献42

同被引文献16

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部