期刊文献+

针对相关性衰减的子阵子空间降秩检测及最优子阵划分

Reduced-Rank Sub-Array Detection and the Optimal Sub-Array Division for Spatial Correlation Attenuation
下载PDF
导出
摘要 针对海洋波导环境下空间相关性衰减导致检测性能下降的问题进行研究。结合子空间降秩和子阵处理,提出了子阵子空间降秩检测方法并对其检测性能进行分析。结果表明,在相关性衰减的情况下,该检测方法能够获得比全阵列处理更好的检测性能。同时研究了子阵划分对子阵检测性能的影响,并给出了空间相关性衰减下的最优子阵划分方法。研究发现:最优子阵长度和信号相关长度之间存在一定的比例关系;当子阵长度与相关长度比值的取值范围为1~2.5时,可以获得最佳的检测效果。最后针对特定海洋波导环境,利用蒙特卡罗方法进行仿真验证。 In this paper,we consider the problem of detection performance degradation caused by the spatial correlation attenuation in the ocean environment. A reduced-rank detector is developed via combining the subspace Eigen Value Decomposition( EVD) with the sub-array processing,and the performance of the detector is evaluated. The results show that the reduced-rank detector using sub-arrays has a better performance than the full-array detector in the presence of imperfect correlation. Meanwhile,effects on the sub-array detection performance of the sub-array geometry are studied,and the optimal sub-array division method is proposed. We notice that there is a certain proportional relation between the optimal sub-array length and the signal correlation length,and that the optimal detection performance can be reached,as the ratio between the sub-array length and the correlation length is in the range of 1 to 2.5. The results are validated by computer simulations.
作者 邵炫 孙超
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2016年第3期520-528,共9页 Journal of Northwestern Polytechnical University
基金 国家重点基础研究发展计划(6131870201) 国家自然科学基金(11274252 11534009)资助
关键词 空间相关性 指数幂律相关性模型 卡方分布 子阵目标检测 最优子阵划分 水下声学 特征值 特征向量 最大似然 蒙特卡罗方法 信号处理 信噪比 spatial correlation exponential-power-law modal chi-square distribution sub-array target detection optimal sub-array division underwater acoustics eigenvalues eigenvectors maximum likelihood Monte Carlo methods signal processing signal to noise ratio
  • 相关文献

参考文献2

二级参考文献18

  • 1Allen B and Ghavami M.Adaptive Array Systems,Fundamentals and Applications[M].Chichester,UK,Wiley,2005,Chapter 1.
  • 2Li J and Stoica P.Robust Adaptive Beamforming[M].Hoboken,NJ,Wiley,2005:1-47.
  • 3Vega L R,Benesty H R J,and Tressens S.A fast robustrecursive least-squares algorithm[J].IEEE Transactions onSignal Processing,2009,57(3):1209-1216.
  • 4Strobach P.Low-rank adaptive filters[J].IEEE Transactionson Signal Processing,1996,44(12):2932-2947.
  • 5Badeau R,David B,and Richard G.Fast approximatedpower iteration subspace tracking[J].IEEE Transactions onSignal Processing,2005,53(8):2931-2941.
  • 6Doukopoulos X and Moustakides G.Fast and stable subspacetracking[J].IEEE Transactions on Signal Processing,2008,56(4):1452-1465.
  • 7Wax M and Kailath T.Detection of signals by informationtheoretic criteria[J].IEEE Transactions on Acoustics,Speech,and Signal Processing,1985,33(2):387-392.
  • 8冯杰,杨益新,孙超.低频共形阵的宽带波束域高分辨方位估计方法[J].系统工程与电子技术,2008,30(1):24-27. 被引量:2
  • 9李关防,惠俊英.基于经验模态分解的模态域MVDR方法研究[J].电子学报,2009,37(5):942-946. 被引量:9
  • 10任超,吴嗣亮,王菊,李加琪.基于空时处理的稳健自适应波束形成算法[J].电子与信息学报,2009,31(6):1381-1385. 被引量:10

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部