期刊文献+

一类二阶非线性Schrdinger方程的孤子解

Soliton Solution of a Kind of Second Order Nonlinear Schrdinger Equation
下载PDF
导出
摘要 通过适当的变量代换将一类二阶非线性Schrdinger方程化成双线性导数方程,再利用Mathematica软件与截断技术,求得非线性Schrdinger方程的单孤子解、双孤子解与多孤子解。 The second order nonlinear Schrodinger equation can be transferred into bilinear derivative equation by dependent variable transformation.Using the Mathematica and interrupt technology,the single soliton solution,double soliton solutions and multiple soliton solutions of the equation are obtained.
作者 张聚梅
机构地区 滨州学院数学系
出处 《滨州学院学报》 2016年第2期31-34,共4页 Journal of Binzhou University
基金 国家自然科学基金资助项目(10971018) 滨州学院科研项目(BZXYL1406) 滨州学院服务滨州项目(BZXYFB20150903)
关键词 非线性SCHRODINGER方程 孤子解 双线性导数 级数 截断 nonlinear Schrdinger equation soliton solution bilinear derivative series truncation
  • 相关文献

参考文献6

  • 1Hirota R.Exact solution of the KdV equation for multiple collisions of solitons[J].Phys rev lett,1971,27:1192-1194.
  • 2Wang Mingliang.Solitary wave solutions for variant Boussinesq equations[J].Phys Lett A,1995,199(3-4):169-172.
  • 3Zhang Guixu,Li Zhibin,Duan Yishi.Exact solitary wave solutions to nonlinear wave equations[J].Science in China(A),2000,30(12):1103-1108.
  • 4Fokas A S.On a class of physically important integrable equations[J].Physica D Nonlinear Phenomena,1995,87(1-4):145-150.
  • 5张大军,邓淑芳,陈登远.mKdV-SineGordon方程的多孤子解[J].数学物理学报(A辑),2004,24(3):257-264. 被引量:7
  • 6Yoshimasa Matsuno.A direct method of solution for the Fokas-Lenells derivative nonlinear Schrdinger equation:I Bright soliton solutions[J].Journal of Physics A Mathematical&Theoretical,2012,45(23):235202.

二级参考文献16

  • 1Gardner C S, Greene J M, Kruskal M D, Miura R M. Method forsolving the KdV equation. Phys Rev Lett, 1967,19:1095-1097
  • 2Ablowitz M J, Segur H. Soliton and the Inverse Scattering Transform. Philadelphia: SIAM, 1981
  • 3Ablowitz M J, Clarkson P A. Solitons, Nonlinear Evolution Equation and Inverse Scattering. Cambridge: Cambridge University Press, 1991
  • 4Hirota R. Exact solution of the KdV equation formultiple collisions of solitons. Phys Rev Lett, 1971, 27: 1192-1194
  • 5Hirota R. A few form of Backlund transformations and its relationto inverse scattering problem. Pro Theo Phys,1974, 52:1498-1512
  • 6Satsum J. A Wronskian representation of N-soliton solutions of nonlinear evolution equations. J Phys Soc Japan,1979, 46:359-360
  • 7Freeman N C, Nimmo J J C. Soliton solitons of the KdV and KP equations: the Wronskian technique. Phys Lett A, 1983, 95: 1-3
  • 8Freeman N C, Nimmo J J C. Soliton solitons of the KdV and KP equations :the Wroanskian technique. Proc R Soc Lond, 1983, 389A: 319-329
  • 9Nimmo J J C, Freeman N C. The use of Backlund transformations in obtaining N-soliton solutions in Wronskian form. J Phys A: Math Gen, 1984, 17: 1415-1424
  • 10Nimmo J J C, Freeman N C. A method of obtainning the soliton solution of the Boussinesq equation in terms of a Wronskain. Phys Lett A, 1983, 95:4-6

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部