期刊文献+

基于分数阶微分、水平集及分水岭的铅锌浮选图像分割 被引量:6

Flotation Image Segmentation by Combining Fractional Differential,Improved Level Set and Watershed
下载PDF
导出
摘要 针对铅锌浮选气泡暗颜色、细节弱、分割难的特征,提出了一种新的图像分割算法。该算法分成3个部分:气泡边界增强,即基于分形学改进分数阶微分算法,根据图像的纹理特性自动确定分数阶微分的非整数阶数,以自适应分数阶微分算法增强气泡边缘;气泡亮点区域提取,即在改进传统的水平集算法基础上,进行气泡亮点区域的精确提取,以克服全局自动阈值算法在提取气泡亮点时存在的缺陷;图像分割,即利用内外标记修正梯度图像,运用分水岭算法对浮选图像进行分割。对不同类型铅锌矿气泡图像进行实验,并通过与多种传统的图像分割算法分析比较。结果表明,新算法不仅提高了浮选气泡图像的分割精度,还有效地减少了传统图像分割算法的过分割问题,本文算法对于浮选气泡具有良好的分割效果。 In order to solve the problem of flotation bubbles, a new algorithm combining the fractional differential, improved level set and Watershed was proposed. The algorithm includes three steps of image enhancement, bubble white spot extraction, and image segmentation. In image enhancement, the fractional differential order was automatically determined on image texture information by using fractal analysis, and the improved adaptive fractional differential algorithm was used to enhance bubble edges. In bubble white spot extraction, the traditional level set algorithm was improved, and it was applied for extracting white spots of bubbles. In image segmentation,the in- ternal and external markers of bubbles were utilized to correct the gradient images, and finally the marked watershed segmentation algo- rithm was used to delineate bubbles. For a number of lead zink ore froth images with different bubble sizes, several traditional image segmentation algorithms were compared with the new algorithm, and the result showed that the proposed algorithm can improve the image segmentation accuracy and is effective in reducing the over-segmentation problem and in segmenting flotation bubbles.
出处 《四川大学学报(工程科学版)》 EI CAS CSCD 北大核心 2016年第4期107-114,共8页 Journal of Sichuan University (Engineering Science Edition)
基金 国家自然科学基金资助项目(61170147)
关键词 浮选 分数阶微分 分形学 水平集 分水岭 flotation fractional differential fractal analysis level set watershed
  • 相关文献

参考文献10

二级参考文献112

共引文献163

同被引文献47

  • 1张光玉,龚光珍,朱维乐.基于克隆算法的彩色图像边缘检测新算法[J].电子学报,2006,34(4):702-707. 被引量:20
  • 2Mehrabi A, Mehrshad N, Massinaei M. Machine vision based monitoring of an industrial flotation cell in an iron flotation plant [ J ]. International Journal of Mineral Processing, 2014, 133(8) :60 -66.
  • 3Wang Weixing, Chen Liangqin. Flotation bubble delineation based on Harris corner detection and local gray value mini- ma[ J ]. Minerals ,2015,5 (2) : 142 - 163.
  • 4Aldrich C, Marais C, Shean B J, et al. Online monitoring and control of froth flotation systems with machine vision: A re- view[J]. International Journal of Mineral Processing,2010, 96(1/2/3/4) :1 - 13.
  • 5Morar S H, Harris M C, Bradshaw D J. The use of machine vision to predict flotation performance [ J ]. Minerals Engi- neering,2012,36/37/38 (10) :31 - 36.
  • 6Hadler K, Greyling M, Plint N, et al. The effect of froth depth on air recovery and flotation performance [ J ]. Minerals Engi- neering,2012,36/37/38 (5) :248 - 253.
  • 7Qu Xuan,Wang Liguang, Nguyen A V. Correlation of air re- covery with froth stability and separation efficiency in coal flotation [ J ]. Minerals Engineering,2013,41 (41) :25 - 30.
  • 8Rojas I, Vinnett L, Yianatos J, et al. Froth transport charac- terization in a two-dimensional flotation cell [ J ]. Minerals Engineering, 2014,66/67/68 ( 10 ) :40 - 46.
  • 9Francis J J, de Jager G. An investigation into the suitability of various motion estimation algorithms for froth imaging [ C]//Proceedings of the 1998 South African Symposium on Communications and Signal Processing ( COMSIG' 98 ). Pis- cataway : IEEE, 1998 : 139 - 142.
  • 10Forbes G, de Jager G. Unsupervised classification of dy- namic froths [ J ]. SAIEE Africa Research Journal, 2007,98 (2) :38 -44.

引证文献6

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部