期刊文献+

α-GWS环 被引量:1

Study on α-GWS Rings
下载PDF
导出
摘要 设α是环R的自同态,如果对任意的a,b,c∈R,若abc=0,有acα(b)∈N(R),则称R为α-GWS环.文中引入了α-GWS环的概念,并举例说明了α-GWS环是α-对称环的真推广,给出了α-GWS环的基本性质,得到了α-GWS环的一些刻画. Let α be an endomorphism of the ring R, then R is called an α-GWS ring, if acoα(b) = 0, whenever abc = 0 for a, b, c ∈ R. In this study the notion of α-GWS rings was introduced. Some examples were given to explain that α-GWS rings are generalizations of α-symmetric rings. The basic properties of α-GWS rings were investigated, and some equivalent characterizations of α-GWS rings were obtained.
出处 《南通大学学报(自然科学版)》 CAS 2016年第2期75-79,共5页 Journal of Nantong University(Natural Science Edition) 
基金 国家自然科学基金项目(11401009)
关键词 α-对称环 GWS环 α-GWS环 α-symmetric rings GWS rings α-GWS rings
  • 相关文献

参考文献8

  • 1LAMBEK J. On the representation of modules by sheaves of factor modules[J]. Canadian Mathematical Bulletin, 1971, 14(3) :359-368.
  • 2ANDERSON D D, CAMILLO V. Semigroups and rings whose zero products commute [Jl- Communications in Alge- bra, 1999, 27(6) :2847-2852.
  • 3KWAK T K. Extensions of extended symmetric rings [J]. Bulletin of the Korean Mathematical Society, 2007, 44(4) : 777-788.
  • 4WEI J C. Generalized weakly symmetric rings[J]. Journal of Pure and Applied Algebra, 2014, 218(9):1594-1603.
  • 5LIANG L, WANG L M, LIU Z K. On a generalization of semicommutative rings [ J ]. Taiwan Residents Journal of Mathe- matics, 2007, 11 (5) : 1359-1368.
  • 6HONG C Y, KIM N K, KWAK T K. Ore extentions of baer and p.p.-rings [J ]. Journal of Pure and Applied Algebra, 2000, 151 (3) :215-226.
  • 7REGE M, CHHAWCHHARIA S. Armendariz rings[J]. Pro- ceeding of Japan Academy, 1997, 73(1) : 14-17.
  • 8ANTOINE R. Nilpotent elements and Armendariz rings [J]. Journal of Algebra, 2008, 319(8) :3128-3140.

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部