期刊文献+

Engineering magnetic nanostructures with inverse hysteresis loops

Engineering magnetic nanostructures with inverse hysteresis loops
原文传递
导出
摘要 Top-down lithography techniques allow the fabrication of nanostructured elements with novel spin configurations, which provide a new route to engineer and manipulate the magnetic response of sensors and electronic devices and understand the role of fundamental interactions in materials science. In this study, shallow nanostructure-patterned thin films were designed to present inverse magnetization curves, i.e., an anomalous magnetic mechanism characterized by a negative coercivity and negative remanence. This procedure involved a method for manipulating the spin configuration that yielded a negative coercivity after the patterning of a single material layer. Patterned NiFe thin films with trench depths between 15%-25% of the total film thickness exhibited inverse hysteresis loops for a wide angular range of the applied field and the trench axis. A model based on two exchange-coupled subsystems accounts for the experimental results and thus predicts the conditions for the appearance of this magnetic behavior. The findings of the study not only advance our understanding of patterning effects and confined magnetic systems but also enable the local design and control of the magnetic response of thin materials with potential use in sensor engineering. Top-down lithography techniques allow the fabrication of nanostructured elements with novel spin configurations, which provide a new route to engineer and manipulate the magnetic response of sensors and electronic devices and understand the role of fundamental interactions in materials science. In this study, shallow nanostructure-patterned thin films were designed to present inverse magnetization curves, i.e., an anomalous magnetic mechanism characterized by a negative coercivity and negative remanence. This procedure involved a method for manipulating the spin configuration that yielded a negative coercivity after the patterning of a single material layer. Patterned NiFe thin films with trench depths between 15%-25% of the total film thickness exhibited inverse hysteresis loops for a wide angular range of the applied field and the trench axis. A model based on two exchange-coupled subsystems accounts for the experimental results and thus predicts the conditions for the appearance of this magnetic behavior. The findings of the study not only advance our understanding of patterning effects and confined magnetic systems but also enable the local design and control of the magnetic response of thin materials with potential use in sensor engineering.
出处 《Nano Research》 SCIE EI CAS CSCD 2016年第8期2347-2353,共7页 纳米研究(英文版)
关键词 magnetic nanostructures magnetic patterning effects inverted loops negative coercivity negative remanence magnetic nanostructures,magnetic patterning effects,inverted loops,negative coercivity,negative remanence
分类号 O [理学]
  • 相关文献

参考文献4

二级参考文献56

  • 1Huh, Y. M.; Jun, Y. W.; Song, H. T.; Kim, S.; Choi, J. S.; Lee, J. H.; Yoon, S.; Kim. K. S.; Shin, J. S.; Suh, J. S. et al. In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals. J. Am. Chem. Soc. 2005,127, 12387-12391.
  • 2Lee, J. H.; Huh, Y. M.; Jun, Y. W.; Seo, J. W.; Jang, J. T.; Song, H. T.; Kim, S.; Cho, E. J.; Yoon, H. G.; Suh, J. S. et al. Artificially engineered magnetic nanoparticles for ultrasensitive molecular imaging. Nat. Med. 2007,13, 95-99.
  • 3Osterfeld, S. J.; Yu, H.; Gaster, R. S.; Caramuta, S.; Xu, L.; Han, S.; Hall, D. A.; Wilson, R. J.; Sun, S.; White, R. L. et al. Multiplex protein assays based on real-time magneticnanotag sensing. P. Natl. Acad. Sci. USA 2008, 105, 20637-20640.
  • 4Gaster, R. S.; Hall, D. A.; Nielsen, C. H.; Osterfeld, S. J.; Yu, H.; Mach, K. E.; Wilson, R. J.; Murmman, B.; Liao, J.C.; Gambhir, S. S. et al. Matrix-insensitive protein assays push the limits of biosensors in medicine. Nat. Med. 2009, 15, 1327-1332.
  • 5Gaster, R. S.; Xu, L.; Han, S. J.; Wilson, R. J.; Hall, D. A.; Osterfeld, S. J.; Yu, H.; Wang, S. X. Quantification of protein interactions and solution transport using high-density GMR sensor arrays. Nat. Nanotechnol. 2011, 6, 314-320.
  • 6Brzeska, M.; Justus, M.; Schotter, J.; Bruckl, H.; Rott, K.; Reiss, G. Development of magnetoresistive sensors for the detection of single molecules by magnetic markers. Molecular Phys. Rep. 2004, 39, 32-38.
  • 7Huang, H.; Delikanli, S.; Zeng, H.; Ferkey, D. M.; Pralle,A. Remote control of ion channels and neurons through magnetic-field heating of nanoparticles. Nat. Nanotechnol.2010, 5, 602-606.
  • 8Kim, D. H.; Rozhkova, E. A.; Ulasov, I. V.; Bader, S. D.; Rajh, T.; Lesniak, M. S.; Novosad, V. Biofunctionalized magnetic-vortex microdiscs for targeted cancer-cell destruction. Nat. Mater. 2010, 9, 165-171.
  • 9Sniadecki, N. J.; Anguelouch, A.; Yang, M. T.; Lamb, C. M.; Liu, Z.; Kirschner, S. B.; Liu, Y.; Reich, D. H.; Chen,C. S. Magnetic microposts as an approach to apply forces to living cells. P. Natl. Acad. Sci. USA 2007,104, 14553-14558.
  • 10Earhart, C. M.; Wilson, R. J.; White, R. L.; Pourmand, N.; Wang, S. X. Microfabricated magnetic sifter for high-throughput and high-gradient magnetic separation. J. Magn. Magn. Mater. 2009, 321, 1436-1439.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部