期刊文献+

半群PS^-(n,r)的具有某种性质的极大子半群

Large Maximal Properties of Some Subsemigroups of the Semigroup PS_n^-
下载PDF
导出
摘要 设PS_n^-是X_n={1,2,…,n}上的降序部分变换半群.对任意1≤r≤n-1,研究半群PS^-(n,r)={α∈PS^-:im(a)≤r},得到了半群PS^-(n,r)的极大子半群和极大幂等元生成子半群的完全分类. Let PSn^- be the semigroup of all decreasing partial transformations on Xn = { 1,2,... ,n }.In this paper, we completely obtained the classification of the maximal subsemigroups as well as the maximal idempotent-generated subsemigroups of the semigroup PS^- (n , r) = {a∈PSn^- : |im(a) |≤r}, for 1≤r≤n- 1.
作者 张传军
出处 《广西师范学院学报(自然科学版)》 2016年第2期15-17,共3页 Journal of Guangxi Teachers Education University(Natural Science Edition)
基金 2015年贵州省教育大数据技术与教育数学院士工作站项目 2014年度贵州省省级本科教学工程建设项目(黔教高发〔2014〕378号)
关键词 降序 极大子半群 极大幂等元生成子半群 decreasing maximal subsemigroup maximal idempotent-generated subsemigroup
  • 相关文献

参考文献3

二级参考文献25

  • 1徐波.关于有限保序部分一一变换半群的极大逆子半群[J].贵州师范大学学报(自然科学版),2007,25(1):72-73. 被引量:10
  • 2Dénes, J.: On Transformations, Transformation semigroups and Graphs, Theory of Graphs. Proe. Colloq.Tihany, 65-75 (1966).
  • 3Bayramov, P. A.: On the problem of completeness in a symmetric semigroup of finite degree (in Russian).Diskret Analiz, 8, 3-27 (1966). MR 34, 7682.
  • 4Liebeck,M. W, Praeger, C. E., Saxl, J.: A classification of the maximal subgroups of the finite alternating and symmetric groups. J. Algebra, 111,365-383 (1987).
  • 5Todorov, K., Kracolova, L.: On the maximal subsemigroups of the ideals of finite symmetric semigroups.Simon Stevin, 59(2), 129-140 (1985).
  • 6Yang, X. L.: Maximal subsemigroups of finite singular transformation semigroups. Communications in Aloebra, 29(3), 1175-1182 (2001).
  • 7Yang, X. L.: A classification of maximal inverse subsemigroups of the finite symmetric inverse semigroups.Communications in Algebra, 2T(8), 4089-4096 (1999).
  • 8Howie, J. M.: An introduction to semigroup theory, Academic Press, London, 1976.
  • 9Tetrad, S.: Unsolved problems in semigroup theory (in Russian). Sverdlovsk, 1969; (Engl. Transl., Semiqroup Forum, 4 , 274-280 (1972)). MR 42, 7807.
  • 10Fountain, J. M.: Abundant semigroups. Proc. London Math. Soc. (3), 44, 103-129 (1982).

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部