期刊文献+

重组大肠杆菌的构建及利用木糖生产木糖醇的研究 被引量:3

Construction of an Engineered Escherichia Coli for Xylitol Production from Xylose
下载PDF
导出
摘要 xylB基因失活可以降低木酮糖的磷酸化,使木糖还原为木糖醇而不进入PPP途径。利用Red重组技术构建xylB缺失大肠杆菌DxylB/E.coli BL21(DE3)可以提高木糖醇的产率。通过PCR克隆得到来自Neurospora crassa的木糖还原酶基因xr,将该基因与载体p ET30a(+)连接构建表达质粒p ET30a-xr;PCR克隆得到来自E.coli K-12的6-磷酸葡萄糖酸脱氢酶(6-phosphogluconate dehydrogenase,6-PGDH)基因gnd和葡萄糖6-磷酸脱氢酶(glucose-6-phosphate dehydrogenase,G6PDH)基因zwf,依次与双启动子原核表达载体p CDFDute-1连接构建表达质粒p CDFDuet-gnd-zwf;将上述构建好的两个重组质粒同时转化到DxylB/E.coli BL21(DE3)宿主体内。经异丙基-?-D-硫代半乳糖苷(IPTG)诱导表达获得分子量约为38、51、54 k D的三种蛋白,酶活测定显示,重组菌种XR的比酶活为7.25 U×mg-1,6-PGDH的比酶活为2.26 U×mg-1,G6PDH的比酶活为1.31 U×mg-1。5 L发酵罐发酵结果显示,xylB基因敲除可以提高木糖醇的产率,含NADPH再生系统的菌株木糖醇的体积产率是1.04 g×(L×h)-1,比只含有木糖还原酶的重组菌株0.88 g×(L×h)-1高24.32%,为后续工业化利用大肠杆菌生产木糖醇奠定了基础。 xylB gene inactivation can reduce xylulose phosphorylation, which leads to the reduction ofxylose into xylitol without a PPP pathway. An E. coli BL21(DE3) strain with xylB gene knocked out by Red-recombination can promote the reduction yield. A pET30a-xr vector was constructed using pET30a(+) and xylose reductase gene xr from Neurospora crassa, gnd and zwf genes were amplified from genomic DNA of E. coli K-12 and cloned into pCDFDuet-1 vector to prepare pCDFDuet-gnd-zwf. The two recombined plasmids constructed were introduced into E. coli BL21(DE3). Three proteins with molecular weights of 38, 51 and 54 kD were expressed in E. coli after induced by isopropy-J3-D-thiogalactoside(IPTG). The xylose reductase specific activity of the recombinant strain is 7.25 U.mg^-1 protein, and the specific activity of 6-PGDH is 2.26 U.mg^-1 protein. Meanwhile, the specific activity of G6PDH is 1.31 U.mg^-1 protein. Fermentation results in 5 L fermenter reveal that the E. coli strain with xylB gene knocked out can promote xylitol yield. Meanwhile, the volumetric xylitol productivity of the gnd and zwf gene-transformed and xr gene containing strain is 1.04 g.(L.h)-1, which is 24.32% higher than that of the engineered strain containing only xr gene. This result is promising for industrial application of xylitol production.
出处 《高校化学工程学报》 EI CAS CSCD 北大核心 2016年第4期864-870,共7页 Journal of Chemical Engineering of Chinese Universities
基金 国家重大新药创制专项(2010ZX090401-403 2012zx09103101) 国家自然科学基金(20306025) 海正药业-浙江大学抗生素生产菌株研发中心(2014001) 浙江省科技厅计划项目(2014C33174)
关键词 xylB基因 xr基因 gnd基因 zwf基因 木糖醇 xylB gene xr gene gnd gene zwf gene xylitol
  • 相关文献

参考文献25

  • 1Khalil A S, Collins J J. Synthetic biology: applications come of age [J]. Nature Reviews. Genetics, 2010, 11(5): 367-379.
  • 2Jarboe L R, Zhang X, Wang X, et al. Metabolic engineering for production of biorenewable fuels and chemicals: contributions of synthetic biology [J]. Journal of Biomedicine & Biotechnology, 2010, 10(55): 76-94.
  • 3Ferreura A S, Souza M A, Barbosa N R, et al. Leishmania amazonensis: xylitol as inhibitor ofmacrophage infection and stimulator of macrophage nitric oxide production [J]. Experimental Parasitology, 2008, 119(1): 74-79.
  • 4Weissman J D, Fernandez F, Peter H. Xylitol nasal irrigation in the management of chronic rhinosinusitis: a pilot study [J]. Laryngoscope, 2011, 121(11): 2468-2472.
  • 5Granstrom T B, Izumori K, Leisola M. A rare sugar xylitol. Part i: The biochemistry and biosynthesis of xylitol [J]. Applied Microbiology and Biotechnology, 2007, 74(2): 277-281.
  • 6Mussatto S I, Roberto I C. Kinetic behavior of Candida guilliermondii yeast during xylitol production from highly concentrated hydrolysate [J]. Process Biochemistry, 2004, 39(11): 1433-1439.
  • 7Yu Chao, Cao Yujin, Zou Huibin, et aL Metabolic engineering of Escherichia coli for biotechnological production of high-value organic acids and alcohols [J]. Applied Microbiology and Biotechnology, 2011, 89(3): 573-583.
  • 8Can Yujin, Xian Mo, Zou Huibin, et al. Metabolic engineering of Escherichia coli for the production of xylonate [J]. Microbial Production of Bulk Chemicals, 2013, 8(7): 1-7.
  • 9Attfield Paul V, Bell Philip J L. Use of population genetics to derive nonrecombinant Saccharomyces cerevisiae strains that grow using xylose as a sole carbon source [J]. FEMS Yeast Research, 2006, 6(6): 862-868.
  • 10Bera Aloke K, Ho Nancy W Y, Khan Aftab, et al. A genetic overhaul of Saccharomyces cerevisiae 424a (lnh-st) to improve xylose fermentation [J]. Journal of Industrial Microbiology & Biotechnology, 2011, 38(5): 617-626.

二级参考文献58

  • 1欧志敏,金志华,吴坚平,杨立荣,岑沛霖.伴有辅酶再生过程的Saccharomyces cerevisiae B5不对称还原2’-氯-苯乙酮的催化反应动力学[J].高校化学工程学报,2005,19(4):511-517. 被引量:9
  • 2羊明,徐岩,穆晓清,肖荣.近平滑假丝酵母NAD(H)依赖型次级醇脱氢酶的分离纯化及酶学性质[J].应用与环境生物学报,2007,13(1):121-125. 被引量:9
  • 3何军邀,孙志浩,郑璞,韩丽.水/有机溶剂两相体系微生物催化不对称还原制备(S)-4-氯-3-羟基丁酸乙酯[J].高校化学工程学报,2007,21(2):310-315. 被引量:7
  • 4XU Zhi—nan(徐志南) CEN Pei—lin(岑沛霖) Wong W K R.The effects ofdifferent glucose feeding modes on hEGF production in an excretory recombinant Escherichia coli K12 sytem(不同流加发酵方式对重组大肠杆菌细胞外表达水平的影响)[J].Chinese J Bloteehnol(生物工程学报),2001,17(5):594-598.
  • 5Kasai N, Siziki T, Furukawa Y. Chiral C3 expoxides and halohydrins: their preparation and synthetic application [J]. J Mol Catal B:Enzymatie, 1998, 4(5): 237-252.
  • 6Wei Z L, Li Z Y, Lin G Q. Anti-Prelog microbial reduction of aryl α-halomethyl or α-hydroxymethyl ketones with Geotrichum sp. 38 [J]. Tetrahedron, 1998, 54(43): 13059-13072.
  • 7Zhu D, Rios B E, Rozzell D et al. Evaluation of substitnent effects on activity and enantioselectivity in the enzymatic reduction of aryl ketones [J]. Tetrahedron Asymmetry, 2005, 16(8): 1514-1546.
  • 8Sakai T, Miki Y, Nakatani Met al. Lipase-catalyzed kinetic resolution of 2-acyloxy-2-(pentafluorophenyl)acetonitrile [J]. Tetrahedron Letters, 1998, 39(29): 5233-5236.
  • 9Dai Z, Zhu C, Yang Met al. The first asymmetric addition of organogallium to aldehydes catalyzed by chiral titanium catalysts [J]. Tetrahedron Asymmetry, 2005, 16(3): 605-608.
  • 10Nakamura K, Matsuda T. Asymmetric reduction of ketones by the acetone powder of Geotrichum candidum [J]. Org. Chem, 1998, 63(24): 8957-8964.

共引文献15

同被引文献23

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部