期刊文献+

火力发电锅炉压力协调控制研究

Study on Pressure Coordination Control of Thermal Power Boiler
下载PDF
导出
摘要 针对火电厂母管制锅炉的母管压力协调优化控制问题,根据负荷需求情况调整锅炉负荷的作用,而母管压力的协调控制难点在于如何进行合理的负荷分配。为了更好的解决母管压力的协调控制问题,提出一种新的锅炉状态评价方案,并且把新的锅炉评价方案与Hopfield神经网络进行融合,采用自适应神经网络对负荷分配进行优化计算,得到最优的分配结果,最终分配结果表明新方法能够实现对母管制机组的负荷进行良好的分配,同时减少能源的消耗。仿真数据表明,上述锅炉控制方案合理,为负荷分配优化提供了可行方法。 The coordinated control of the mother tube boiler in the thermal power plant plays an important role in adjusting the boiler load according to the load demand, however the difficulty of the coordinated control of the main tube pressure lies in how to carry out the reasonable load distribution. In order to better solve the problem of main tube pressure control, a new boiler state evaluation scheme was proposed in the paper. The new boiler evaluation scheme and Hopfield neural network were integrated, and the optimal allocation results were obtained using the adaptive neural network to optimize the load distribution. The final results show that this method can achieve a good distribution of the main tube control unit, and reduce the consumption of energy at the same time. The simulation data illustrate that the evaluation scheme of the boiler is reasonable, and the method of load distribution is feasible.
出处 《计算机仿真》 CSCD 北大核心 2016年第7期180-183,216,共5页 Computer Simulation
关键词 母管制锅炉 母管压力 状态评价 负荷分配 神经网络 Mother tube boiler Mother tube pressure Status evaluation Load distribution Neural network
  • 相关文献

参考文献10

  • 1高岩,梁太龙.并列运行工业锅炉的负荷优化分配[J].北京理工大学学报,2002,22(3):318-320. 被引量:9
  • 2李学明,窦文龙,李志军,刘吉臻.电厂负荷优化分配的专家系统[J].动力工程,2005,25(1):84-87. 被引量:13
  • 3朱洪军,周佐.母管制锅炉压力协调优化控制系统的实现[J].自动化与仪表,2009,24(10):34-38. 被引量:6
  • 4Chang Chan-Yu, Si-Yan Lin, Mu Der Jeng. Two-layer Competi- tive HopfieldNeural Network for Wafer Defect Detection[ J]. Net- working, Sensing and Control. 2005, (2) : 1058-1063.
  • 5C C Kuand, K Y Lee. Digaonal recurrent neural networks for dy- namic systems control [J].[EEE, Transactions on Neural Net- works, 1995, (6) :144-156.
  • 6兰兆青.Hopfield神经网络在TSP问题中的应用[D].中北大学,2011,(5):47—48.
  • 7周明,代诗刚,张国忠.自适应Hopfield神经网络及其在经济负荷分配中的应用[J].热力发电,2007,36(8):35-39. 被引量:1
  • 8G Pajares.. A Hopfield Neural Network for Image Change Detec- tion[J]. IEEE Transactions on Neural Networks. 2006, (17): 1250-1264.
  • 9王瑞珍,于和奎.母管压力调节与负荷分配实施方案[J].信息科学与工程技术,2008,(12):611—614.
  • 10Li Ming-ai, Qiao Jun-fei, Ruan Xiao-gang. A Modified Differ- ence Hopfield Neural Network and its Application[ J ]. The Sixth International Congress on Intelligence Control and Automation. 2006, ( 1 ).

二级参考文献21

  • 1C.E.Lin,G.L.Viviani.Hierarchical Economic Dispatch for Piecewise Quadratic Cost Functions[J].IEEE Trans on PAS,1984,PAS-103 (6):72-81.
  • 2Ross D W,Kim S.Dynamic economic dispatch of genera tion[J].TRRF.Trans on PAS,1980,(99):2060-2068.
  • 3Farag A,Al-Baiyat S,Cheng T C.Economic load dispatch multiobjective optimization procedures using linear programmingTechniques[J].IEEE Trans on PS,1995,10(2):731-738.
  • 4Nanda J,Hari Lakshman,Kothari M L.Economic emission load dispatch with line flow constrains using a classical technique[J].IEEEProc-Gener,Transm,Distrib,1994,141(1):1-10.
  • 5Wang S J,Shahidehpour S M,Kirschen D S.Shortterm generation scheduling with transmission and environmental constraints using an augmented Lagrangian relaxation[J].IEEE Trans on PS,1995,10(3):1294-1301
  • 6David C Walters,Gerald B Sheble.Genetic algorithm solution of economic dispatch with valve point loading[J].IEEE Trans on PS,1993,8(3):1325-1332.
  • 7Annakkage U D,Numnonda T,Pahalawaththa N C.Unit commitment by parallel simulated annealing[J].IEE Proc-Gener,Transm,Distrib,1995,142(6):595-600.
  • 8Mao Ya-lin,Zhang Guo-zhong,Zhu Bin,etc.Chaotic simulated annealing neural network with decaying chaotic noise and its application in economic load dispatch of power systems[R].Proceedings of the 2004 IEEE International Conference on,2004:536-542.
  • 9J.J.hopfield.Neural networks and physical systems with emergent collective computational abilities[R].USA:Proceedings of National Acadeny of Science,1982,79(8):2554-2558.
  • 10W.D.Tank,J.J.Hopfield.Simple neural optimization networks:an A/D converter,signal decision circuit,and a linear programming circuit[J].IEEE Transactions on Systems,Mans,and Cybernetics,1992,CAS-33(5):553-541.

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部