期刊文献+

两轮机器人自平衡稳定性控制仿真研究 被引量:5

Simulation Research on Self Balancing Stability Control of Two-Wheeled Robot
下载PDF
导出
摘要 两轮机器人自平衡控制的难点在于提高机器人达到平衡的快速性和稳定性的能力。为解决传统强化学习算法收敛速度慢,系统易发散的问题,提出一种分层强化学习算法。将目标任务分解为若干个子任务,为每个子任务寻找最优策略,当所有的子目标都收敛到最优值时,目标任务也收敛到最优。在上述算法中,报酬函数可以从启发式的环境中学习,加快对未知环境的探索,快速达到自平衡并保持稳定。对两轮机器人进行自平衡仿真实验。仿真结果表明,相对于传统的强化学习算法,应用改进算法的两轮机器人的各控制状态的收敛特性及机器人的学习性能更强,有效的提高了机器人系统的稳定性控制性能。 The difficulty of self balancing control of two wheeled robot is to improve the ability of the robot to a- chieve the balance rapidly and stably. In order to solve the problems of slow convergence speed and divergent system of traditional reinforcement learning algorithm, a hierarchical reinforcement learning algorithm was proposed in the paper. The algorithm decomposes target task into several subtasks and searches the optimal strategy for each task. When all sub-goals converge to the optimal value, the target task also converges to the optimal. In this algorithm, the compensation function can learn from the environment of heuristic, speed up the exploration of the unknown environment, achieve self balance quickly and maintain stability. The self balancing simulation experiment of two-wheeled robot was carried out using this algorithm. Simulation results show that compared with traditional reinforcement learning al- gorithm, the convergence properties of each control state and the learning performance of the two-wheeled robots are stronger by using this algorithm. Stability control of the robot system is improved.
出处 《计算机仿真》 CSCD 北大核心 2016年第7期383-387,共5页 Computer Simulation
基金 高等学校骨干教师资助计划-高等学校青年骨干教师国内访问学者进修项目(A1-5300-15-020201) 上海市高等学校科学技术发展基金-上海市高校实验技术队伍建设计划项目(A2-B-8950-13-0714)
关键词 两轮机器人 平衡控制 分层强化学习 Two-wheeled robot Balancing control Hierarchical reinforcement learning
  • 相关文献

参考文献9

  • 1杨凌霄,梁书田.两轮自平衡机器人的自适应模糊平衡控制[J].计算机仿真,2015,32(5):411-415. 被引量:10
  • 2J Wu, Y Liang, Z Wang. A robust control method of two-wheeled self-balancing robot [ C ]. In : Strategic Technology ( IFOST), 6th International Forum On, 2011,2 ( 1 ) : 1031-1035.
  • 3C J Watkins, P Dayan. Q - learning [ J ]. Machine Learning, 1992,8(3) :279-292.
  • 4A Goh. Back-propagation neural networks for modeling complex systems [ J 1. Artificial Intelligence in Engineering, 1995,9 ( 3 ) : 143-151.
  • 5杨凌霄,李晓阳.基于卡尔曼滤波的两轮自平衡车姿态检测方法[J].计算机仿真,2014,31(6):406-409. 被引量:43
  • 6S Jeong, T Takahashi. Wheeled inverted pendulum type assistant robot : inverted mobile, standing, and sitting motions [ J ]. Intelli- gent Robots and Systems, 2007,1 (1) :1932 - 1937.
  • 7齐光景,谢刚,柳英杰.一种双轮小车的自平衡运动控制系统[J].计算机仿真,2014,31(4):212-218. 被引量:2
  • 8S Adam, Bu soniu. Experience replay for real-time reinforcement learning control [ C ]. Systems, Man, and Cybernetics, Part C : Applications and Reviews, IEEE Transactions on, 2012,42 (2): 201 - 212.
  • 9T G Dietterich. Hierarchical reinforcement learning with the maxq value function decomposition ~ J 1. Artif |ntell. Res. ( JAIR ), 2000,13:227 - 303.

二级参考文献44

共引文献51

同被引文献36

引证文献5

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部