期刊文献+

基于节点相似度的功能脑网络建模方法

Method of brain functional network modeling based on nodes similarity
下载PDF
导出
摘要 为比较3类链路预测指标(共同邻居、节点的度以及将二者相结合)中哪类指标更适用于功能脑网络建模,从5种脑网络全局与局部属性的角度分析建模效果,提出一种评价模型网络与真实网络整体相似度的指标"E值"。采用将脑网络结构与功能特性相结合的方法进行建模,结构特性为解剖距离,功能特性为节点相似度。实验结果表明,不同的链路预测指标对网络属性的拟合程度各不相同,从整体拟合度E值来看,共同邻居最好,共同邻居与度相结合次之,度最差。 To explore which of the three kinds of link prediction indexes including common neighbor,degree,common neighbor combined with degree can fit the real brain network better,the modeling results were analyzed from the perspective of five global and local brain network properties.In addition,an E value was proposed to evaluate the overall similarity between the model net-works and the real networks.Brain functional network modeling was based on anatomical distance and node similarity.The re-sults show that,different link prediction indexes can fit the properties differently.In terms of the overall similarity,common neighbor is the best index followed by common neighbor combined with degree,and degree is the worst.
出处 《计算机工程与设计》 北大核心 2016年第7期1902-1905,共4页 Computer Engineering and Design
基金 国家自然科学基金项目(61170136 61373101 61472270 61402318) 山西省教育厅高校科技创新基金项目(20121003) 太原理工大学青年基金项目(2012L014 2013T047)
关键词 功能脑网络 建模 链路预测指标 解剖距离 网络相似度 brain functional network modeling link prediction indexs anatomical distance network similarity
  • 相关文献

参考文献1

二级参考文献66

  • 1GETOOR L,DIEHL C P.Link mining:a survey[J].ACM SIGKDD Explorations Newsletter,2005,7(2):3-12.
  • 2SARUKKAI R R.Link prediction and path analysis using markov chains[J].Computer Networks,2000,33(1-6):377-386.
  • 3ZHU J,HONG J,HUGHES J G Using markov chains for link prediction in adaptive web sites[J].Lect Notes Comput Sci,2002,2311:60-73.
  • 4POPESCUL A,UNGAR L.Statistical relational learning for link prediction[C] //Proceedings of the Workshop on Learning Statistical Models from Relational Data.New York:ACM Press,2003:81-87.
  • 5O'MADADHAIN J,HUTCHINS J,SMYTH P.Prediction and ranking algorithms for event-based network data[C] //Proceedings of the ACM SIGKDD 2005.New York:ACM Press,2005:23-30.
  • 6LIN D.An information-theoretic definition of similarity[C] //Proceedings of the 15th Intl Conf Mach.Learn..San Francisco,Morgan Kaufman Publishers,1998:296-304.
  • 7LIBEN-NOWELL D,KLEINBERG J.The link-prediction problem for social networks[J].J Am Soc Inform Sci Technol,2007,58(7):1019-1031.
  • 8CLAUSET A,MOORE C,NEWMAN M E J.Hierarchical structure and the prediction of missing links in networks[J].Nature,2008,453:98-101.
  • 9HOLLAND P W,LASKEY K B,LEINHARD S.Stochastic blockmodels:First steps[J].Social Networks,1983,5:109-137.
  • 10GUIMERA R,SALES-PARDO M.Missing and spurious interactions and the reconstruction of complex networks[J].Proc Natl Sci Acad USA,2009,106(52):22073-22078.

共引文献242

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部