期刊文献+

新型模糊半监督加权聚类算法中的权值v

Feature weight vin novel semi-supervised fuzzy clustering algorithm with feature discrimination
下载PDF
导出
摘要 为体现实际应用中不同特征对聚类性能的影响,提出一种模糊半监督加权聚类算法。采用聚类和特征加权同步进行的思想,将特征加权融合到聚类过程中,对不同约束条件下的权值对聚类准确率的影响进行分析,实时观测权值在聚类过程中的变化轨迹的目标。在UCI和自测数据集上的相关实验结果表明,权值能够有效提高算法的性能。 To reflect the weight effectiveness of various features on the performance of clustering,a semi-supervised fuzzy cluste-ring algorithm with feature discrimination (SFFD)was proposed,in which feature weighting was incorporated into the process of clustering and the clustering and feature weighting were performed synchronously.The influence of the weights on the accuracy of clustering was analyzed under various amounts of constraints.During the clustering process,the traj ectories of weights were observed in real time.Experimental results on UCI and self-testing datasets demonstrate that the weight can effectively improve the performance of the algorithm.
出处 《计算机工程与设计》 北大核心 2016年第7期1937-1941,共5页 Computer Engineering and Design
基金 国家863高技术研究发展计划基金项目(2013AA10230402) 国家自然科学基金项目(61402374) 陕西工院科研基金项目(ZK11-34)
关键词 机器学习 半监督聚类 特征加权 成对约束 聚类性能 machine learning semi-supervised clustering feature weighting pairwise constraints clustering performance
  • 相关文献

参考文献10

  • 1Filipovych R,Resnick SM,Davatzikos C.Semi-supervised cluster analysis of imaging data[J].Neuroimage,2011,54(3):2185-2197.
  • 2Tari L,Baral C,Kim S.Fuzzy c-means clustering with prior biological knowledge[J].Journal of Biomedical Informatics,2009,42(1):74-81.
  • 3Kang BY,Ko S,Kim DW.SICAGO:Semi-supervised cluster analysis using semantic distance between gene pairs in Gene ontology[J].Bioinformatics,2010,26(10):1384-1385.
  • 4Oh CH,Honda K.Dual exclusive partition in fuzzy CoDoK and SCAD-based fuzzy co-clustering[J].Procedia Computer Science,2013,22:800-809.
  • 5Horta D,Campello RJGB.Automatic aspect discrimination in relational data clustering[C]//11th International Conference on Intelligent Systems Design and Applications,2011:522-529.
  • 6Zhu S,Wang D,Li T.Data clustering with size constraints[J].Knowledge-Based Systems,2010,23(8):883-889.
  • 7Yin X,Chen S,Hu E,et al.Semi-supervised clustering with metric learning:An adaptive kernel method[J].Pattern Recognition,2010,43(4):1320-1333.
  • 8Liu W,Ma S,Tao D,et al.Semi-supervised sparse metric learning using alternating linearization optimization[C]//Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,2010:1139-1148.
  • 9Kulis B,Basu S,Dhillon I,et al.Semi-supervised graph clustering:A kernel approach[J].Machine Learning,2009,74(1):1-22.
  • 10Yin XS,Shu T,Huang Q.Semi-supervised fuzzy clustering with metric learning and entropy regularization[J].Knowledge-Based Systems,2012,35(15):304-311.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部