期刊文献+

近红外光谱技术的恩施玉露原产地鲜叶收购价格评估 被引量:3

Evaluation of the purchasing price of Enshi Yulu fresh tea leaves using near infrared spectroscopy
下载PDF
导出
摘要 为科学客观地评估鲜叶收购价格,应用近红外光谱技术结合人工神经网络方法和联合区间偏最小二乘法,建立了三种鲜叶收购价格预测模型并比较了预测效果.应用联合区间偏最小二乘法筛选最佳光谱区间为5 750-6 000cm^-1,7 750-8 000cm^-1,8 250-8 500cm^-1,8 500-8 750cm^-1,9 500-9 750cm^-1和9 750-10 000cm^-1,并对上述光谱进行主成分分析.前5个主成分累计贡献率为99.87%,并以此为输入值建立收购价格人工神经网络预测模型(R^2=0.968 7,RMSEP=4.625).模型预测结果优于全波长人工神经网络模型(R^2=0.855 1,RMSEP=5.218)和联合区间偏最小二乘法模型(R2=0.581 6,RMSEP=25.433)的预测结果.近红外光谱技术结合人工神经网络和联合区间偏最小二乘法,能够快速、准确、客观的评估鲜叶收购价格,有利于统一鲜叶收购价格标准,有效地减少纠纷。 Near infrared spectroscopy combined with the back propagation artificial neural network algorithm and the synergy interval partial least square algorithm was used to evaluate the purchasing price of fresh tea leaves. The nearinfrared spectra regions of 5 750 cm^-1 to 6 000 cm^-1, 7 750 cm^-1 to 8 000 cm^-1 , 8 250 cm^-1 to 8 500 cm^-1 , 8 500 cm^-1 to 8 750 cm^-1 , 9 500 cm^-1 to 9 750 cm^-1 and 9 750 cm^-1 to 10 000 cm^-1 were selected to establish a model by using the synergy interval partial least square algorithm. The first five principal components that explained 99.87 - of the variability of the selected spectral data were used to build tea leaves' purchasing price model with the back propagation artificial neural algorithm. The performance of this model (R^2 , 0. 968 7; RMSEP, 4. 625) was superior to those of the back propagation artificial neural model (Re , 0.8551 ;RMSEP, 5. 218) and the synergy interval partial least square model (R^2, 0. 581 6; RMSEP, 25. 433), The near infrared spectroscopy combined with the synergy interval partial least square algorithm and the back propagation artificial neural network algorithm could be used to evaluate the price of Enshi Yulu tea leaves accurately, quickly and objectively.
出处 《中国计量学院学报》 2016年第2期167-171,共5页 Journal of China Jiliang University
基金 国家青年科学基金资助项目(No.31400586) 国家茶叶产业技术体系项目(No.CARS-23) 湖北省农业科学院青年科学基金资助项目(No.2015NKYJJ08)
关键词 恩施玉露茶鲜叶 收购价格 近红外光谱 联合区间偏最小二乘法 人工神经网络 Enshi Yulu fresh tea leaves purchasing price near infrared spectroscopy synergy interval partial least square back propagation-artificial neural network
  • 相关文献

参考文献17

  • 1BAHORUN T, LUXIMON-RAMMA A, GUNNESS T K, et al. Black tea reduces uric acid and C-reactive protein lev- els in humans susceptible to cardiovascular diseases[J]. Toxicology, 2010,278 (1) : 68-74.
  • 2恩施市质量技术监督局.DB42/351-2009,地理标志产品恩施玉露[s].北京:中国人民大学出版社,2006.
  • 3Enshi Environment Monitoring Center. DB 42/ 351-2009, Product of geographical indieation-Enshi yulu[S]. Beljing: Renmin University of China Press,2006.
  • 4ZHOU Xingfan, YANG Zengling, HAUGHEY S A, et al. Classification the geographical origin of corn distillers dried grains with solubles by near infrared reflectance spectrosco- py combined with chemometries: a feasibility study[J]. Food Chemistry, 2015,189 13-18.
  • 5LIU Xuemei, LIU Jianshe. Using short wave visible-near infrared reflectance spectroscopy to predict soil properties and content [J]. Spectroscopy Letters, 2014,47 (10) : 729- 739.
  • 6WU Changfu, WU Tzonggang, HASHMONAY R A, et al. Measurement of fugitive volatile organic compound e- missions from a petrochemical tank farm using open path Fourier transforminfrared spectrometry [J]. Atmospheric Environment, 2014,82 335-342.
  • 7TAVANAIE M, ESMAEILIAN N, MOJTAHEDI M. Ol- ive hue visible near infrared camouflage properties of high speed melt spun poly(ethylene terephthalate) multifilamentyarn[J]. Dyes and Pigments, 2015,114 : 267-272.
  • 8BLANCO M, PEGUERO A. Analysis of pharmaceuticals by NIR spectroscopy without a reference method[J]. TrAC Trends in Analytical Chemistry, 2010,29 (10) : 1127-1136.
  • 9LEE M, SEO D, LEE H, et al. In line NIR quantification of film thickness on pharmaceutical pellets during a fluid bed coating process[J]. International Journal of Pharmaceu- tics,2011,403(1,2) :66-72.
  • 10LEE M, HWANG Youngsun, LEE J, et al. The charac- terization of caffeine and nine individual catechins in the leaves of green tea (Camellia sinensis L. ) by near-infra- redreflectance spectroscopy[J]. Food Chemistry, 2014,158 : 351-357.

二级参考文献16

  • 1田海清,应义斌,徐惠荣,陆辉山,傅霞萍.西瓜可溶性固形物含量近红外透射检测技术[J].农业机械学报,2007,38(5):111-113. 被引量:31
  • 2LU Song-hou, SHI Zhao-peng (陆松侯,施兆鹏).Tea Evaluation and Inspection(theThird Edition)(茶叶审评与检验第3版).Beijing:China Agriculture Press(北京:中国农业出版社),2001.55.
  • 3Luiz C M P, Waldomiro B N, Maria C M. Talanta, 2007, 71(5) : 1926.
  • 4Luypaert J, Zhang M H, Massart D L. Analytiea Chimica Acta, 2003, 487(2): 303.
  • 5Chen Q S, Zhao J W, Liu M H. Journal of Pharmaceutical and Biomedical Analysis, 2008, 46(3):568.
  • 6Chen Q S, Zhao J W, Sumpun C. Food Chemistry, 2009, 113(4): 1272.
  • 7Chen Q S, Zhao J W, Zhang H D. Analytica Chimica Acta, 2006, 572(2):77.
  • 8Jiang J H, Berry R J, Siesler H W. Analytical Chemistry, 2002, 74(14): 3555.
  • 9Norgaard L, Saudland A, Wagner J. Applied Spectroscopy, 2000, 54(3): 413.
  • 10Leardi R, Norgaard L. Journal of Chemometrics, 2004, 18(11) : 486.

共引文献21

同被引文献61

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部