期刊文献+

一种二维鲁棒随机权网络及其应用

A novel two dimension robust neural networks with random weights and its applications
下载PDF
导出
摘要 二维随机权网络的主要特点是将矩阵数据直接作为输入,可以保留矩阵数据本身的结构信息,从而提高识别率.然而,二维随机权网络在处理含有离群值的人脸图像识别问题时效果往往不佳.为了解决该问题,提出一种新的人脸识别方法——二维鲁棒随机权网络,并用期望最大化算法来求解网络参数.实验结果显示,该方法能够较好地处理含有离群值的人脸识别问题. The major advantage of two dimensional neural networks with random weights (2DNNRW) is to use matrix data as the input directly to reserve the structural information of the matrix data itself. Hence, compared with the neural networks with random weights (NNRW), the recognition rate is improved. However, the existing 2DNNRW is not good at the face recognition with outliers. Now, we proposed a two dimension robust neural networks with random weights (2DRNNRW). The expectation-maximization algorithm (EM) was used to calculate the parameters of the networks. Experiments on different face databases demonstrate that the proposed algorithm is effective to deal with the problem of face recognition with outliers.
出处 《中国计量学院学报》 2016年第2期239-246,共8页 Journal of China Jiliang University
基金 国家自然科学基金资助项目(No.61272023 91330118)
关键词 人工神经网络 二维随机权网络 人脸识别 期望最大化算法 artificial neural networks neural networks with random weights face recognition expectation-maximization algorithm
  • 相关文献

参考文献36

  • 1LAM K M, YAN Hong. Locating and extracting the eye in human face images [J]. Pattern Recognition, 1996,29 (5) : 771-779.
  • 2DENG J Y, LAI Feipei. Region-based template deforma- tion and masking for eye-feature extraction and description [J ]. Pattern Recognition, 1997,30 (3) : 403-419.
  • 3TURK M, PENTLAND A P. Eigenfaces for recognition [J]. Journal of Cognitive Neuroscience,1991,3(1) :71-86.
  • 4SHERMINA J. Illumination invariant face recognition u- sing discrete cosine transform and principal component anal- ysis[C]// 2011 International Conference on Emerging Trends in Electrical and Computer Technology (ICETECT). Tamil Nadu: IEEE,2011:826-830.
  • 5LU Jiwen, TAN Yappen, WANG Gang. Discriminative multi-manifold analysis for face recognition from a single training sample per person[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013,35 ( l ) : 39-51.
  • 6ONKARE R P, CHAVAN M S, PRASAD S R. Efficient Principal Component Analysis for Recognition of Human Facial Expressions [J]. International Journal of Advance Research in Computer Science and Management Studies, 2015,3(2) :53-60.
  • 7LU Guifu, ZOU Jian, WANG Yong. Incremental complete LDA for face recognition [J]. Pattern Recognition, 2012,45 (7) : 2510-2521.
  • 8ZHOU Changiun, WANG Lan, ZHANG Qiang, et al.Face recognition based on PCA image reconstruction and LDA [J]. Optik-lnternational Journal for Light and Electron Optics, 2013,124 (22) : 5599-5603.
  • 9OH S K, YOO S H, PEDRYCZ W. Design of face recogni- tion algorithm using PCA-LDA combined for hybrid data pre-proeessing and polynomial-based RBF neural networks: Design and its application [J]. Expert Systems with Applica- tions, 2013,40(5) : 1451-1466.
  • 10BANSAL A, MEHTA K, ARORA S. Face recognition using PCA and LDA algorithm[C]//2012 Second Interna- tional Conference on Advanced Computing & Communica- tion Technologies (ACCT). Rohtak, Haryana: IEEE, 2012:251-254.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部