期刊文献+

欧式算术平均亚式期权定价——基于Lévy过程的Monte Carlo仿真

Valuation of the European Arithmetic Average Asian Option——Monte Carlo Simulation Based on Lévy Process
下载PDF
导出
摘要 经典的Black-Scholes期权定价模型假定资产收益率服从布朗运动,但现实中的金融市场存在跳跃且收益率具有"尖峰厚尾"、"隐含波动率"等特征,因此Black-Scholes模型不能对其进行完全描述,而Lévy过程是左极限右连续带跳的半鞅模型,更能准确地描述真实的金融市场。故本文假定标的资产服从指数Lévy过程,求解欧式算术平均亚式期权定价公式,利用Monte Carlo方法并结合矩匹配的方差减小技术对数据进行仿真,结果表明Lévy过程在亚式期权定价中具有优越性。 The Classic Black-Scholes option pricing model assumes that asset returns follow Brownian motion, but the jump phenomenon appears the reality of financial markets. Returns have fat tail and implied volatility characteristics. Black-Scholes model cannot completely describe the financial markets. Lévy process is semi-continuous martingale model with jump, and more accurately describes the real financial markets. Therefore, this paper assumes that the underlying asset follow exponential Lévy process. The pricing formulae for the European arithmetic average Asian option was obtained. Using Monte Carlo method combined with the variance reduction technique of moment matching to simulate the data, the superiority of Lévy process in Asian option pricing is indicated.
作者 杜子平 邱虹
出处 《财会通讯(中)》 北大核心 2016年第6期5-7,共3页 Communication of Finance and Accounting
基金 国家自然科学基金资助项目(项目编号:71071111) 天津市社科理论"五个一批"人才基金项目阶段性研究成果
关键词 欧式算术平均亚式期权 LÉVY过程 Monte CARLO方法 矩匹配技术 the European arithmetic average Asian option Lévy process Monte Carlo simulation Moment matching technique
  • 相关文献

参考文献3

二级参考文献18

  • 1罗庆红,杨向群.几何型亚式期权的定价研究[J].湖南文理学院学报(自然科学版),2007,19(1):5-7. 被引量:11
  • 2Biagini F,Hu Y,et al.Stochastic Calculus for Fractional Brownian Motion and Applications[M].New York:Springer,2008.
  • 3Cox J C, Ross S A, Rubinstein M. Option pricing: A simple approach[ J ]. Journal of Finance Economics, 1979, 7 (2) : 229-263.
  • 4Barraquand J P. Pricing of American path-dependent contingent claims[J]. Mathematical Finance, 1996, 3 (1) : 17-51.
  • 5Shreve S, Vecer J. Options on a trade account: Vacation calls, vacation puts and passport options[J]. Finance and Stochastics, 2000, 8(4) : 255-274.
  • 6Hoogland J. Neumann D. Local scale Invariance and contingent claim pricing[ J]. International Journal of Theoretical and Applied Finance, 2001, 4(1): 1-21.
  • 7Long J. The numeraire portfolio[J]. Journal of Financial Economics, 1990, 26( 1 ) : 29-69.
  • 8Merton R. An intertemporal capital asset pricing model[ J]. Econometrica, 1973, 10(5) : 467-888.
  • 9Jeanblance P, Pontier M. Optimal portfolio for a small investor in a market model with discontinuous prices [ J ]. Appl. Math. Optim, 1990, 9(5) : 287-310.
  • 10Mercurio F. Option pricing for jump diffusion. Approximations and their imterpreation[ J]. Mathematical Finance, 1993, 9 (6) : 191-20.

共引文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部