期刊文献+

弹球支持张量机分类器

Support Tensor Machine Classifier with Pinball Loss
下载PDF
导出
摘要 机器学习、模式识别、数据挖掘等领域中的输入模式常常是高阶张量.文中首先从向量模式推广到张量模式,提出弹球支持张量机模型.然后给出求解弹球支持张量机模型的序贯最小优化算法(SMO).为了保持张量的自然结构信息,同时加速训练过程,采用张量的秩-1分解代替原始张量计算张量内积.在向量数据和张量数据上进行的大量实验表明:对于向量数据,相比经典的积极集法,SMO的计算速度更快;对于张量数据,相比弹球支持向量机,弹球支持张量机具有更快的训练速度和更好的泛化能力. The input patterns are usually high-order tensors in the fields of machine learning, pattern recognition, data mining, etc. In this paper, the pin-support vector machine is firstly extended from vector to tensor and the support tensor machine (STM) classifier with pinball loss (pin-STM) is proposed. Then, a sequential minimal optimization (SMO) algorithm is designed to solve this model. To maintain the nature structure of tensor and speed up the training procedure, the rank-one decomposition of tensor is used to substitute the original tensor to compute the inner products of tensors. The experimental results on vector datasets and tensor datasets show that SMO is faster than the classical active-set method for vector data. Compared with pin-SVM, the pin-STM has higher training speed and better generalized performance for tensor data.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2016年第7期598-607,共10页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金项目(No.11501219 61273295)资助~~
关键词 弹球支持向量机(pin—SVM) 弹球支持张量机(pin-STM) 秩-1分解 序贯最小优化算法(SMO) Support Vector Machine Classifier with Pinball Loss (pin-SVM) , Support Tensor Machine Classifier with Pinball Loss (pin-STM), Rank-One Decomposition, Sequential Minimal Optimization (SMO)
  • 相关文献

参考文献1

二级参考文献11

  • 1Dacheng Tao,Xuelong Li,Xindong Wu,Weiming Hu,Stephen J. Maybank.Supervised tensor learning[J].Knowledge and Information Systems.2007(1)
  • 2X. He,,D. Cai,,P. Niyogi.Tensor subspace analysis[].Nineteenth Annual Conference on Neural Information Processing Systems.2005
  • 3H. Lu,,K. N. Plataniotis,,A. N. Venetsanopoulos.MPCA: Multilinear principal component analysis of tensor objects[].IEEE Transactions on Neural Net- works.2008
  • 4Y. Fu,T. S. Huang.Image classification using correlation tensor analysis[].IEEE Transactions on Image Processing.2008
  • 5M. Heath,,K. Bowyer,,D. Kopans, et al.The digital database for screening mammography[].IWDM’ (th International Workshop on Digital Mammogra- phy).2000
  • 6EI-Naqa I,Yang Yongyi,Wernick M N,et al.A support vector machine approach for detection of microcalcifications[].IEEE Transactions on Medical Imaging.2002
  • 7Liyang Wei,,Yongyi Yang,Robert M.Nishikawa,and Yulei Jiang.A study on several machine-learning methods for classification of malignant and benign clustered microcalcifications[].IEEE Transactions on Medical Imaging.2005
  • 8Tao DC,Li XL,Wu XD,Hu WM,Maybank SJ.Supervised tensor learning[].Knowledge and Information Systems.2007
  • 9Wei Liyang,Yang Yongyi,Nishikawa R M,et al.Relevance vector machine for automatic detection of clustered microcalcifications[].IEEE Transactions on Medical Imaging.2005
  • 10YANS,XUD,YANG Q.Multilinear discriminant analysis for face recognition[].IEEE Transactions on Image Processing.2007

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部