期刊文献+

分级多孔炭的生物诱导合成及其吸附性能 被引量:1

Preparation of Hierarchical Porous Carbon by Biological Induced Method and Its Adsorption Property
下载PDF
导出
摘要 以凌霄花瓣为生物模板、蔗糖为炭源、氯化钠为造孔剂、氢氧化钾为活化剂,采用生物诱导法合成了分级多孔炭,确定了最佳工艺参数并研究了各工艺参数对该多孔炭显微结构及吸附性能的影响。结果表明:最佳合成工艺参数为蔗糖、NaCl、KOH溶液质量分数分别为1.0%,2.0%,1.0%,体积比为1∶1∶1,活化温度为650℃,活化时间为60 min;制备的多孔炭基本保留了凌霄花瓣的微观形貌,孔径分布较窄,比表面积高达357 m^2·g^(-1);该多孔炭具有极强的吸附能力,在120mg·L^(-1)的亚甲基蓝溶液中,在120min时达到吸附饱和,吸附量可达60mg·g^(-1)。 With campsis grandiflora as bio-template, sucrose as carbon source, NaC1 as pore-forming agent and KOH as activator, hierarchical porous carbon was prepared by biological induced method. The optimum process parameters were determined and the effects of different process parameters on the microstructures and adsorption properties of the porous carbon were investigated. The results show that the optimum synthesis process parameters were obtained as follows: 1.0wt% sucrose solution, 2.0wt% NaC1 solution and 1.0wt% KOH solution with volume ratio of 1 : 1 : 1 ; activation temperature of 650 ℃ ; activation time of 60 min. The obtained porous carbon retained the microstructure of campsis grandiflora and had a relatively narrow pore size distribution and a relatively high specific surface area of 357 m^2 ·g^-1. The adsorption property of the porous carbon was excellent. In the methylene blue solution of 120 mg·g^-1, the porous carbon reached the adsorption saturation at 120 min with the adsorption capacity of 60mg·g^-1
出处 《机械工程材料》 CAS CSCD 北大核心 2016年第7期18-23,共6页 Materials For Mechanical Engineering
基金 国家自然科学基金资助项目(21103119,21277094,21407111) 江苏省高校自然科学研究面上项目(11KJB430012) 教育部留学回国人员科研启动经费资助项目(2013693) 江苏省高校研究生科研创新计划项目(CXZZ13_0855)
关键词 生物模板 分级多孔炭 显微结构 吸附性能 bio-template hierarchical porous carbon microstructure adsorption property
  • 相关文献

参考文献31

  • 1WANG Y, LIU Z M, HUA B X, et al. Carbon microspheres with supported siliver nanoparticles from pollen grains[J]. Langmuir, 2005,21(23) : 10846-10849.
  • 2JIA Y F, THOMAS K M. Adsorption of cadmium ions on oxygen surface sites in activated earbon[J]. Langmuir, 2000,16 (3);1114-1122.
  • 3XU Y J, WEINBERG G, LIU X, et al. Nanoarehiteeturing of activated earbon: facile strategy for chemical funetionalization of the surface of activated carbon [J]. Advanced Functional Materials, 2008,18(22) ; 3613-3619.
  • 4IQBAL M J, ASHIQ M N. Adsorption of dyes from aqueous solutions on activated charcoal [J]. Journal of Hazardous Materials, 2007,139(1) : 57-66.
  • 5SOTIROPOULOU S, SIERRA S Y, MARK S S, et al.Biotemplated nanostructured materials [ J ]. Chemistry of Materials, 2008,20 (3) : 821-834.
  • 6HASEGAWA G, KANAMORI K, NAKAN1SHI K, et al. Hierarchically porous carbon monoliths with high surface area from bridged polysilsesquioxanes without thermal activation process[J]. Chemical Communications, 2010,46 : 8037-8039.
  • 7MULLER B R. Effect of particle size and surface area on the adsorption of albumin-bonded bilirubin on activated carbon[J]. Carbon, 2010,48 (12) : 3607-3615.
  • 8KANTE K, NIETO-DELGADO C, RANGEL-MENDEZ J R, et al. Spent coffee-based activated carbon: specific surface features and their importance for H2S separation proeess[J]. Journal of Hazardous Materials, 2012,201 : 141-147.
  • 9SILVESTRE-ALBERO A, GONCALVES M, ITOH T, et al. Well-defined mesoporosity on lignocellulosic-derived activated carbons[J].Carbon, 2012,50(1) : 66-72.
  • 10INAGAKI M, KAWAHARA A, KONNO H. Recovery of heavy oil from contaminated sand by using exfoliated graphite [J]. Desalination, 2004,170(1) : 77-82.

二级参考文献92

  • 1张晓昕,郭树才,邓贻钊.高表面积活性碳的制备[J].材料科学与工程,1996,14(4):34-37. 被引量:43
  • 2汪昆华,罗传秋.聚合物近代仪器分析[M].2.北京:清华大学出版社,2005.98-133
  • 3BOEHM H P. Some aspects of the surface chemistry of carbon blacks and other carbons [J]. Carbon, 1994, 32(5): 759-769.
  • 4STOHR B, BOEHM H P, SCHLOGL R. Enhancement of the catalytic activity of activated carbons in oxidation reactions by thermal treatment with ammonia or hydrogen cyanide and observation of a superoxide species as a possible intermediate [J]. Carbon, 1991, 29(6): 707-720.
  • 5STOHR B, BOEHM H P, SCHLI3GL R. Enhancement of the catalytic activity of activated carbons in oxidation reactions by thermal treatment with ammonia or hydrogen cyanide and observation of a superoxide species as a possible intermediate [J]. Carbon, 1991, 29(6): 707-720.
  • 6ALVAREZ P M, GARCIA-ARAYA J F, BELTRAN F J, et al. Ozonation of activated carbons: Effect on the adsorption of selected phenolic compounds from aqueous solutions [J]. J Colloid Interf Sci, 2005, 283(2): 503-512.
  • 7BANSAL R C, GOYAL M. Activated Carbon Adsorption [M]. Boca Raton: Taylor and Francis, 2005.
  • 8LOPEZ-GARZON F J, DOMINGO-GARCIA M, PEREZ-MENDOZA M, et al. Textural and chemical surface modifications produced by some oxidation treatments of a glassy carbon [J]. Langmuir, 2003, 19(7): 2838-2844.
  • 9BINIAK S, SZYMA/qSKI G, SIEDLEWSKI J, et al. The characterization of activated carbons with oxygen and nitrogen surface groups [J]. Carbon, 1997, 35(12): 1799-1810.
  • 10PUZIY A M, PODDUBNAYA O I, MARTiNEZ-ALONSO A, et al. Synthetic carbons activated with phosphoric acid I. Surface chemistry and ion binding properties [J]. Carbon, 2002, 40(9): 1493-1505.

共引文献74

同被引文献18

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部