期刊文献+

钛合金蜂窝瓦楞板的成形工艺 被引量:2

Forming Process for Titanium Alloy Honeycomb Corrugated Sheet
下载PDF
导出
摘要 以两个成形齿轮作为辊压模具,用与瓦楞板外轮廓参数完全相同的齿形模具作为校形模,采用辊压/校形复合工艺制备了钛合金蜂窝瓦楞板;运用Ansys/Ls-Dyna软件对瓦楞板的成形过程进行有限元模拟,探讨了上下成形齿轮间隙与成形质量的关系,得到了优化工艺,并用试验对成形工艺进行了验证。结果表明:用辊压/校形复合工艺制备高精度钛合金瓦楞板是可行的,瓦楞板尺寸的最大误差仅为1.8%;辊压成形时齿轮的最大间隙值是影响瓦楞板成形精度的关键参数之一,当最大间隙值为0.2mm、校形压力为3 000 MPa、校形时间为30s时,瓦楞板的成形质量最好;采用可调式箱体来控制成形齿轮的平行度及最大间隙值,可有效降低对辊压装置的加工及装配精度要求。 Two forming gears were used for roll mold and another tooth profile mould which is exactly the same as that of corrugated sheet in design parameters was used for sizing. Titanium alloy corrugated sheet was manufactured by the composited process of roll forming and sizing. Through Ansys/Ls-Dyna software, finite element modeling of the forming process was performed to analyze the relationship between gear clearance and quality of corrugated sheet. And then, the experimentation was carried out to validate reliability of the composited process. The results show that, it was feasible to fabricate the corrugated sheet with high precision by this composited process, the maximum value of dimension error was only 1.8%. Furthermore, maximum value of gear clearance were one of the key factors affecting the quality of corrugated sheet, the optimized values were maximum value of gear clearance of 0.2 mm, sizing stress of 3 000 MPa and sizing time of 30 s. It's also found that it can highly reduce the accuracy requirement of manufacturing and assembly by using adjustable body to control parallelism and maximum value of gear clearance.
出处 《机械工程材料》 CAS CSCD 北大核心 2016年第7期81-86,共6页 Materials For Mechanical Engineering
关键词 钛合金 瓦楞板 辊压 有限元模拟 titanium alloy corrugated sheet rolling finite element modeling (FEM)
  • 相关文献

参考文献16

  • 1KIM J, SWANSON S R. Design of sandwich structures for concentrated loading[J]. Composite Structures, 2001, 52(3):365-373.
  • 2文义平,龙建军.铝蜂窝芯铝芯材成形过程仿真与实验研究[J].机械设计与制造,2013(1):268-271. 被引量:2
  • 3HUANG X, RICHARIXS N L. Activated diffusion brazing technology for manufacture of titanium honeycomb structures- a statistical study[J]. Welding Journal, 2004, 83(3): 73S- 81S.
  • 4赵永庆.国内外钛合金研究的发展现状及趋势[J].中国材料进展,2010,29(5):1-8. 被引量:156
  • 5ELROD S D, LOVELL D T, DAVIS R. Aluminum brazed titanium honeycomb sandwich structure-a new system [J]. Welding Journal, 1973, 52(10) :425-432.
  • 6DARYABEIGI K. Heat transfer in adhesively bonded honeycomb core panels [J]. Journal of Thermophysies and Heat Transfer, 2002, 16(2) : 217-221.
  • 7董鑫,石晓朋,常飞,王旭.蜂窝芯体厚度对Nomex蜂窝夹层复合材料压缩性能的影响[J].机械工程材料,2014,38(10):46-49. 被引量:4
  • 8FATEMI J, LEMMEN M. Effective thermal/mechanical properties of honeycomb core panels for hot structure applications[J]. Journal of Spacecraft and Rockets, 2009, 46 (3) : 514-525.
  • 9BOUDJEMAI A, BOUANANE M H, MANKOUR R A, et al. MDA of hexagonal honeycomb plates used for space applications[C]//Proceedings of World Academy of Science, Engineering and Technology. [S. 1.]: World Academy of Science, Engineering and Technology, 2012: 204-212.
  • 10HUANG X, RICHARDS N L. Activated diffusion brazing technology for manufacture of titanium honeycomb structures-a statistical studyLJ~. Welding Journal, 2004, 83(3): 73-81.

二级参考文献85

共引文献204

同被引文献15

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部