期刊文献+

汇率波动性的近似熵与样本熵分析 被引量:2

The Approximate Entropy and the Sample Entropy Analysis of Exchange Rate Volatility
下载PDF
导出
摘要 熵估计在生理时间序列上被广泛应用,例如近似熵与样本熵。将熵估计方法应用于汇率时间序列中,用于识别汇率市场在不同时间的波动状态并加以分析。在不同维度下讨论了近似熵与样本熵反映汇率时间序列波动的情况,并对同一维度下近似熵与样本熵效果进行了比较,发现样本熵比近似熵可以更好地反映汇率的波动性,并且更加灵敏。得出样本熵算法在汇率市场中良好地反映了大事件的发生与延续,解决了近似熵算法对微小的复杂性变化不灵敏的缺陷,并且显著提高了熵估计在短时间序列上的可用性和精确度。 Entropy estimation is widely used in physiological time series,such as the approximate entropy and the sample entropy. In this paper,entropy estimation method is used to identify and analyze the time series of fluctuations in different times in the exchange rate market. This paper discussed the approximate entropy and the sample entropy on the reflects of the fluctuation of the exchange rate time series under different dimensions,and compared the approximate entropy and the sample entropy under the same dimension,and found that the sample entropy can reflect the volatility of exchange rate better than the approximate entropy,and more sensitive. The paper found that the sample entropy algorithm reflects the big events and continuance in the currency markets very well,solves the defect that the approximate entropy algorithm is not sensitive to the tiny change of complexity,and significantly improves the availability and accuracy of the entropy estimation in a short time series.
出处 《技术与创新管理》 2016年第4期438-441,共4页 Technology and Innovation Management
关键词 汇率 波动性 近似熵 样本熵 exchange rate volatility approximate entropy sample entropy
  • 相关文献

参考文献12

二级参考文献58

  • 1李建国.人民币汇率变动趋势及其影响[J].财贸研究,2006,17(1):76-80. 被引量:16
  • 2黄盛.人民币汇率的影响因素及变化趋势研究[J].特区经济,2006(11):12-14. 被引量:13
  • 3王建波.基于复杂网络理论的时间序列分析[D].上海:上海理工大学,2010.
  • 4YANG Y, YANG H. Complex network-based time series analysis [J]. Physica A, 2008,387:1381 - 1386.
  • 5JIANG Z, YANG H, WANG J. Complexities of human promoter sequences [J]. Physica A, 2009,388:1299 - 1302.
  • 6WANG J, YANG H. Complex network based analysis of air temperature data in China [J]. Mod Phys Lett B, 2009,23:1781 - 1789.
  • 7YANG Y, WANG J, YANG H, et al. Visibility graph approach to exchange rate series [J]. Physica A, 2009,388:4431 - 4437.
  • 8DONNER R V, ZOU Y. Recurrence networks a no- vel paradigm for nonlinear time series analysis [J].New J Phys,2010,12:033025.
  • 9GAO Z, JIN N. Flow-pattern identification and non- linear dynamics of gas-liquid two - phase flow in com- plex networks [J]. Phys Rev E,2009,79:066303.
  • 10GAO Z, JIN N. Community structure detection in complex networks with applications to gas-liquid two- phase flow [J]. LNICST, 2009,5:1917 - 1928.

共引文献18

同被引文献34

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部