期刊文献+

基于LBP/VAR与DBN模型的人脸表情识别 被引量:21

Facial expression recognition based on LBP/VAR and DBN model
下载PDF
导出
摘要 针对现有表情识别研究中均采用有监督模型实现特征提取,提出一种新的基于DBN(deep belief net)模型无监督的表情特征提取与识别方法。首先通过对人脸表情图片提取对光照与旋转具有鲁棒性的LBP/VAR初次特征,再通过DBN网络对初次特征实现人脸表情的二次特征提取与分类学习。对DBN参数采用动态搜索的方法,即在一个大范围内搜索确定RBM Mini-batch、BP Mini-batch与RBM隐层数量的最优值,再确定DBN深度与迭代次数最佳值。在CK+数据库上与传统KNN、SVM有监督分类模型进行的对比实验表明,提出的方法在识别率上分别提高了19.34%和14.22%。 In contrast to the supervised feature extraction method adopted in facial expression recognition, this paper proposed a new method based on the deep belief net model of deep learning architecture. Firstly, it extracted the LBP/VAR feature to forn~ the first feature because the LBP/VAR feature was robust to the light and rotation. Then used DBN model to extract the second feature and to implement the classification of facial expression. For the DBN' s parameters, this paper set a wide dy- namic range to search the proper value of RBM Mini-batch, BP Mini-batch and number of hidden unit, then in search of the best value of DBN' s depth and the number of epochs. It took the experiment on CK + database and the new method had an ex- cellent performance. The result shows that the recognition rate of this new method increases 19.34% and 14.22% contrast to KNN and SVM.
出处 《计算机应用研究》 CSCD 北大核心 2016年第8期2509-2513,共5页 Application Research of Computers
基金 国家自然科学基金资助项目(61463034)
关键词 深度信念网络 表情识别 局部二进制模式 深度学习 deep belief net facial expression recognition LBP deep learning
  • 相关文献

参考文献19

  • 1Ekman P, Friesen W V. Constants across culture in the face and emotion [J]. Journal of Personality Social Psychol, 1971, 17 (2) : 124-129.
  • 2Mehrabian A. Communication without words [J ]. PSyChology To- day,1968, 2(4) : 53-56.
  • 3Zeng Zhihong, Roisman G I, Huang T S. A survey of affect recogni- tion methods: audio, visual and spontaneous expression [J]. IEEE Yrans on Pattern Analysis and Machine Intelligence, 2009, 31 (1): 39-58.
  • 4薛雨丽,毛峡,郭叶,吕善伟.人机交互中的人脸表情识别研究进展[J].中国图象图形学报,2009,14(5):764-772. 被引量:49
  • 5Cootes T F, Edwards G J, Taylor C J. Active appearance models [ J ]. IEEE Yrans on Patter Analysis and Machine Intelligence,2001, 23(6) : 681-685.
  • 6Ojala T, Pietikanem M, Maenpaa T. Muhiresolution gray-scale and rotation invariant texture classification with local binary patterns [ J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2002, 24(7) : 971-987.
  • 7Hinton G E, Osindero S, Teh Y W. A fast learning algorithm for deep belief net [ J]. Neural Computation,2006, 18 (7) : 1527- 1554.
  • 8Yu Dang, Deng Li. Deep learning and its applications to signal and information processing [J]. IEEE Signal Processing Magazine, 2011,28(1) : 145-154.
  • 9余凯,贾磊,陈雨强,徐伟.深度学习的昨天、今天和明天[J].计算机研究与发展,2013,50(9):1799-1804. 被引量:610
  • 10Sarikaya R, Hinton G E, Deoras A. Application of deep belief net- works for natural language understanding [ J]. I EEE/ACM Trans on Audio, Speech, and Language Processing, 2014, 22 (4) : 778- 784.

二级参考文献102

  • 1薛雨丽,毛峡,张帆.BHU人脸表情数据库的设计与实现[J].北京航空航天大学学报,2007,33(2):224-228. 被引量:20
  • 2Belhumeur P N, Hespanha J P, Kriegman D J. Eigenfaces: vs. fisherfaces: recognition using class specific linear projection [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7) : 711-720.
  • 3Sire T, Baker S, Bsat M. The CMU pose, illumination, and expression (PIE) database [ A ] . In: Proceedings of the IEEE International Conference on Automatic Face and Gesture Recognition [C] , Washington, DC, USA, 2002: 46-51.
  • 4Martinez A M, Benavente R. The AIR face database [ R]. Technical Report 24, The Computer Vision Center (CVC), Barcelona, Spain, 1998.
  • 5Hwang B W, Rob M C, Lee S W. Performance evaluation of face recognition algorithms on Asian face database [ A ]. In: Proceedings of the Sixth IEEE International Conference on Automatic Face and Gesture Recognition [ C ], Seoul, South Korea, 2004 : 278-283.
  • 6Gau W, Cao B, Sban S, et al. The CAS-PEAL large-scale chinese face database and baseline evaluations [ J ]. IEEE Transactions on Systems, Man and Cybernetics, Part A, 2008, 38( 1 ) : 149-161.
  • 7Pantic M, Rothkrantz L J M. Automatic analysis of facial expressions: the state of the art [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22 ( 12 ) : 1424-1446.
  • 8Fasel B, Luettin J. Automatic facial expression analysis: a survey [ J]. Pattern Recognition, 2003, 36 ( 1 ) : 259-275.
  • 9Essa I, Pentland A. Coding, analysis, interpretation, and recognition of facial expressions [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 757-763.
  • 10Yacoob Y, Davis L. Recognizing human facial expressions from long image sequences using optic flow [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(6) : 636-642.

共引文献704

同被引文献150

引证文献21

二级引证文献168

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部