期刊文献+

融合目标形状信息及图割窄带优化的目标跟踪算法

Object tracking by fusing narrow-band graph cuts and shape information
下载PDF
导出
摘要 提出基于图割窄带优化算法及融合目标形状信息的目标跟踪方法。首先采用卡尔曼滤波方法对目标新的位置进行预测,进而基于目标当前位置及分割结果估计目标的形状信息;然后在目标预测位置采用窄带的图割优化算法并集成目标的形状先验信息对目标进行分割,从而确定目标新的位置并得到目标新的轮廓结果,完成目标的精确跟踪。实验结果表明提出的方法具有良好的性能,能够精确有效地跟踪复杂背景中的运动目标。由于采用窄带图割分割优化,使得算法也具有良好的实时性,能够在实际中得到应用。 This paper proposed an object tracking algorithm based on narrow-band graph cuts and object shape information. It first used Kalman filter to predict the new location of the tracked object, and then estimated the object shape information based on the current object shape. Lastly it exploited the narrow band graph cuts to segment the predicted object and extracted the accurate object shape by integrating shape prior into graph cuts in order to track object accurately. The experiments on the real videos demonstrate the good performance of the proposed tracking algorithm. Owing to the narrow band graph cuts, the pro- posed tracking algorithm has good real-time and can be used in practice.
出处 《计算机应用研究》 CSCD 北大核心 2016年第8期2547-2551,共5页 Application Research of Computers
基金 国家自然科学基金资助项目(61305044) 高校博士点基金资助项目(20130144120004)
关键词 目标跟踪 分割 图割 窄带 形状信息 object tracking segmentation graph cuts narrow band shape information
  • 相关文献

参考文献8

  • 1Isard M, Blake A. Contour tracking by stochastic propagation of con- ditional density [ C ]//Proc of European Conference on Computer Vi- sion. 1996: 343-356.
  • 2李振兴,刘进忙,李松,白东颖,倪鹏.基于箱式粒子滤波的群目标跟踪算法[J].自动化学报,2015,41(4):785-798. 被引量:29
  • 3Yang Fan, Lu Huchuan, Yang Minghsuan. Robust superpixel trac- king[J]. IEEE Trans on Image Processing, 2014, 23(4) :1639- 1651.
  • 4Danelljan M, Shahbaz K F, Felsberg M, et al. Adaptive color attri- butes for real-time visual tracking[ C ]//Proe of IEEE Conference on Cornmputer Vision and Patlero Recognition. Washingten DC: IEEE Computer Society, 2014 : 1090-1097.
  • 5向金海,樊恒,徐俊,邓君丽.基于局部稀疏表示的目标跟踪[J].华中科技大学学报(自然科学版),2014,42(7):92-95. 被引量:7
  • 6Freedman D, Turek M. lllumination-invariant tracking via graph cuts [ C ]//Proc of IEEE Conference on Computer Vision and Pattern Rec- ognition. 2005 : 10-17.
  • 7Freedman D, Zhang Tao. Interactive graph cut based segmentation with shape priors [ C ]//Proc of IEEE Computer Socieyt Conference on Computer Vision and Pattern Recognition. [ S. 1. ] : IEEE Press, 2005 : 755-762.
  • 8Jang S, Choib K, Toha K, et al. Contour tracking by stochastic pro- pa-gation of conditional density [ J ]. Pattern Recognition, 2015, 48(1): 126-139.

二级参考文献22

  • 1Waxinann M J, Drunnnond O E. A bibliography of cluster (group) tracking. In: Proceedings of the 2004 International Conference on Signal and Data Processing of Small Targets. Orlando, USA: SPIE, 2004. 551-560.
  • 2Mahler R P S. Statistical Multisource-Multitarget Informa- tion Fusion. Boston: Artech House, 2007.
  • 3Helbing D. Traffic and related self-driven many-particle sys- tems. Reviews of3lodern Physics, 2002, 73(4): 1067-1141.
  • 4Pang S K, Li J, Godsill S. Detection and tracking of coor- dinated groups. IEEE Transactions on Aerospace and Elec- tronic Systems, 2011, 47"(1): 472-501.
  • 5Clark D, Godsill S. Group target tracking with the Gaussian mixture probability hypothesis density filter. In: Proceed- ings of the 3rd IEEE International Conference on Intelligent Sensors, Sensor Networks and Information Processing. Mel- bourne, AU: IEEE, 2007. 149-154.
  • 6Koch J W. Bayesian approach to extended object and clus- ter tracking using random matrices. IEEE Transactions on Aerospace ald Electronic Systems, 2008, 44(3): 1042-1059.
  • 7Gning A, Mihaylova L, Maskell S, Pang S K, Godsill S. Group object structure and state estimation with evolving networks and Monte Carlo methods. IEEE Transactions on Signal Processing, 2011, 59(4): 1383-1395.
  • 8Gning A, Ristic B, Mihaylova L. Bernoulli particle/box- particle filters for detection and tracking in the presence of triple mea.surement uncertainty. IEEE Transactions on Signal Processing, 2012, 60(5): 2138-2151.
  • 9Abdallah F, Gning A, Bonnifait P. Box particle filtering for nonlinear state estimation using interval analysis. Automat- ica, 2008, 44(3): 807-815.
  • 10Gning A, Ristic B, Mihaylova L, Abdallah F. An introduc- tion to box particle filtering. IEEE Signal Processing Mag- azine, 2013, 30(4): 166-171.

共引文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部