期刊文献+

一类具有强Allee效应的捕食-食饵模型共存解的存在性 被引量:2

The existence of coexistence solutions of a predator-prey model with strong Allee effect
下载PDF
导出
摘要 研究一类具有强Allee效应的捕食-食饵模型的共存解。首先,以捕食者增长率b为分歧参数,利用局部分歧定理证明发自半平凡解局部分支的存在性;其次,利用全局分歧定理将该局部分支延拓成全局分支,因此得到共存解存在性的充分条件;最后,刻画了全局分支的走向。结果表明:该模型的分歧图像形成一个Loop。由分歧图像可知,当Allee效应强度M∈(0,1/2),食饵增长率r>r*且b∈(λ_1(-(du_2*)/(1+mu_2*),λ_1(-)du_1*/(1+mu_1*))时,捕食者与食饵可以共存。 The coexistence solutions of a predator-prey model with strong Allee effect are studied.Firstly,by using local bifurcation theory and regarding the growth rate of the predator b as a bifurcation parameter,the existence of the local bifurcation branch from the semi-trivial solution branch is proved.Secondly,the local bifurcation branch can be extended to a global bifurcation branch by global bifurcation theory.The sufficient condition for the existence of coexistence solutions is got.Finally,the trend of the global bifurcation branch is depicted.It is shown that the bifurcation diagram of this model is a Loop,which indicates that coexistence solutions of the model are existed whenever b∈(λ1(-(du2*)/(1+mu2*),λ1(-)du1*/(1+mu1*)),the parameter M ∈(0,1/2)(which reflects the intensity of strong Allee effect),and the inherent growth rate of the prey r〉r*.
出处 《陕西师范大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第4期5-10,76,共7页 Journal of Shaanxi Normal University:Natural Science Edition
基金 国家自然科学基金(11271236)
关键词 强Allee效应 捕食-食饵模型共存解 全局分歧 LOOP strong Allee effect coexistence solution of a predator-prey model global bifurcation Loop
  • 相关文献

参考文献16

二级参考文献24

  • 1Ko W,Ryu K.Qualitative analysis of a predator-prey model with Holling type ⅡI functional response incorporating a prey refuge[J].Journal of Differential Equations,2006,231 (2):534-550.
  • 2Peng Rui,Shi Junping.Non-existence of non-constant positive steady states of two Holling type-Ⅱ predator prey systems:Strong interaction case[J].Journal of Differential Equations,2009,247:866-886.
  • 3Figueiredo D G,Gossez J P.Strict monotonicity of eigenvalues and unique continuation[J].Communications in Partial Differential Equation,1992,17(2):339-346.
  • 4Dancer E N.On the indices of fixed points of mapping in cones and applications[J].Journal of Mathematical Analysis and Applications,1983,91(1):131-151.
  • 5Dancer E N,Du Yihong.Positive solutions for a threespecies competition system with diffusion-Ⅰ.General existence results[J].Nonlinear Analysis:Theory,Methods and Applications,1995,24(3):337-357.
  • 6Zheng Sining,Liu Jing.Coexistence solutions for a reaction-diffusion system of un-stirred chemostat model[J].Applied Mathematics and Computation,2003,145(3):597-590.
  • 7王明新.非线性椭圆型方程[M].北京:科学出版社,2003:141.
  • 8Brown K J. Nontrivial solutions of predator-prey systems with small diffusion[J].{H}Nonlinear Analysis TMA,1987.685-689.
  • 9Conway E D,Gardner R,Smoller J. Stability and bifurcation of steady-state solutions for predator-prey equations[J].{H}ADVANCES IN APPLIED MATHEMATICS,1982,(3):288-334.
  • 10Du Yihong,Lou Yuan. Some uniqueness and exact multiplicity results for a predator-prey model[J].Transctions of the American Mathematical Society,1997,(6):2443-2475.

共引文献16

同被引文献9

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部