期刊文献+

对合K-正则半环

K-regular semiring with involution
下载PDF
导出
摘要 研究对合K-正则半环的性质,利用K-正则半环的Green-关系从多个角度刻画对合K-正则半环,对合半群的幂半环是对合K-正则半环当且仅当对合半群是对合正则半群,最后给出对合正则半群的幂半环是对合交换半环的几个等价命题。 Some properties on K-regular semiring with involution are studied.The K-regular semiring with involution are discussed in different ways by using Green-relation on K-regular semiring.The power semiring of semigroup with involution which is a K-regular semiring with involution if and only if semigroup is a regular semigroup.Finally,it is obtained that the equivalent proposition of the power semiring of involutorial regular semigroup which is a commutative semiring with involution.
作者 冯军庆 徐慧
出处 《陕西师范大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第4期14-16,共3页 Journal of Shaanxi Normal University:Natural Science Edition
基金 陕西省自然科学基金(2014JQ1014) 国家自然科学基金(61402364)
关键词 对合K-正则半环 K-幂等元 幂等元半环 幂半环 K-regular semiring with involution K-idempotents idempotent semiring power semiring
  • 相关文献

参考文献9

  • 1DOLINKA I.Idempotent distributive semirings with involution[J].International Journal of Algebra and Computation,2003,5:597-625.
  • 2SEN M K,BHUNIYA A K.On semirings whose additive reduct is a semilattice[J].Semigroup Forum,2011,82:131-140.
  • 3JONSSON B.The theory of binary relations[M]∥HALMDS P R.Algebraic Logic.Amsterdam:NorthHolland,1991:245-292.
  • 4DOLINCA I,VINCIC M.Involutorial Plonka sums[J].Periodica Mathematica Hungarica,2003,46(1):17-31.
  • 5DOLINCA I.On the lattice of varieties of involution semigroups[J].Semigroup Forum,2001,82:438-459.
  • 6DOLINCA I.All varieties of normal bands with involution[J].Periodica Mathematica Hungarica,2000,40:109-122.
  • 7HOWIE J M.Fundamentals of semigroup theory[M].Oxford:Clarendon Press,1995.
  • 8HOWIE J M.Automata and languages[M].Oxford:Clarendon Press,1991.
  • 9NORDAHL T E,SCHEIBLICH H E.Regular*-semigroups[J].Semigroup Forum,1978,16:369-377.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部