期刊文献+

组织工程血管培养生物反应器出口端加载阻力的应力刺激形成系统的设计与验证 被引量:1

Design and verification of Luo-Ye pump-based stress formation for cultivation of tissueengineered blood vessel
下载PDF
导出
摘要 目的改进组织工程血管(TEBV)培养应力形成系统,增强平滑肌细胞分泌的刺激作用。方法在生物反应器出口外侧加装阻力气泵,构建新的TEBV体外三维培养体系;通过压力导丝监测生物反应器内不同点压力变化,获得应力-时间变化曲线;按动态培养中是否添加阻力分成改进组和对照组,并设静态培养组,对动脉平滑肌细胞(VSMC)进行四周的三维培养;终止培养后采用HE染色、masson染色、α-SMA免疫组化染色及电子显微镜进行组织学检测,并运用软件对管壁成分进行半定量分析。结果压力监测数据及拟合曲线显示,添加阻力后可明显加大动力源"罗叶泵"每搏的应力刺激;培养结果显示改进组新生组织中VSMC及胶原纤维密布于管壁全层,细胞分布及密度、胶原纤维含量及排列、α-SMA表达均显著优于对照组及静态组。结论改进的系统应力刺激作用明显得到增强并可进一步促进VSMC分泌功能。 Objective To improve Luo-Ye pump-based stress-forming system and optimize the stimulating effect on smooth muscle cells during cultivation of tissue-engineered blood vessels(TEBV).Methods A new Luo-Ye pump-based TEBV 3D culture system was developed by adding an air pump to the output of the bioreactor.A pressure guide wire was used to measure the stress at different points of the silicone tube inside the TEBV bio-reactor,and fitting curves of the stress changes over time was created using Origin 8.0 software.The TEBVs were constructed by seeding vascular smooth muscle cells(VSMCs) isolated from human umbilical artery on polyglycolic acid(PGA) and cultured under dynamic conditions with 40 mm Hg resistance(improved group),dynamic conditions without resistance(control group) or static condition(static group)for 4 weeks.The harvested TEBVs were then examined with HE staining,masson staining,α-SMA immunohistochemical staining,and scanning and transmission electron microscopy with semi-quantitative analysis of collagen content and α-SMA expression.Results The measured stress values and the fitting curves showed that the stress stimuli from the Luo-Ye pump were enhanced by adding an air pump to the output of the bioreactor.Histological analysis revealed improved VSMC density,collagen content and α-SMA expression in the TEBVs constructed with the improved method as compared with those in the control and static groups.Conclusion Adding an air pump to the Luo-Ye pump significantly enhances the stress stimulation in the TEBV 3-D culture system to promote the secretion function of VSMCs.
出处 《南方医科大学学报》 CAS CSCD 北大核心 2016年第7期1008-1013,共6页 Journal of Southern Medical University
基金 广东省科技计划项目(2009B060700116 2013B010404034)
关键词 组织工程血管 罗叶泵 应力 三维培养 平滑肌细胞 tissue-engineered blood vessels Luo-Ye pump stress three-dimensional culture vascular smooth muscle cell
  • 相关文献

参考文献16

  • 1Mitchell SL, Niklason LE. Requirements for growing tissue- engineered vascular grafts [J]. Cardiovasc Pathol, 2003, 12(2): 59-64.
  • 2Peck M, Gebhart D, Dusserre N, et al. The evolution of vascular tissue engineering and current state of the art [J]. Cells Tissues Organs, 2012, 195(1/2): 144-58.
  • 3Huang AH, Niklason LE. Engineering of arteries in vitro[J]. Cellular and Mol Life Sci, 2014, 71(11): 2103-18.
  • 4Dahl SL, Blum JL, Niklason LE. Bioengineered vascular grafts: can we make them off-the-shelf[J]? Trends Cardiovasc Med, 2011, 21 (3): 83-9.
  • 5Solan A, Dahl SL, Niklason LE. Effects of mechanical stretch on collagen and cross-linking in engineered blood vessels[J]. Cell Transplant, 2009, 18(8): 915-21.
  • 6周嘉辉,吴岳恒,李东风,郑坚奕,林展翼.新型生物反应器用于构建组织工程血管的初步探索[J].广东医学,2013,34(13):1971-1973. 被引量:5
  • 7周嘉辉,吴岳叵,李东风等.脉动式张应力环境下培养组织工程血管的初步实验[C]//第15届中国南方国际心血管病学术会议论文集.03,广州,2013:187-91.
  • 8吴岳恒,黄焕雷,周嘉辉,成安衡,余细勇,林展翼,庄建,肖学钧.基于罗叶泵的搏动式组织工程培养体系的构建[J].中国医学装备,2013,10(8):1-5. 被引量:3
  • 9Gao J, Niklason L, Langer R. Surface hydrolysis of poly(glycolic acid) meshes increases the seeding density of vascular smooth muscle cells[J]. J Biomed Mater Res, 1998, 42(3): 417-24.
  • 10Beamish JA, He P, Kottke-Marchant K, et al. Molecular regulation of contractile smooth muscle cell phenotype: implications for vascular tissue engineering[J]. Tissue Eng Part B Rev, 2010, 16(5): 467-91.

二级参考文献26

  • 1NAITO Y, SHINOKA T, DUNCAN D, et al. Vascular tissue en-gineering; towards the next generalion vascular grafts [ J ]. AdvDrug Deliv Rev, 2011,63(4/5) : 312 -323.
  • 2NIKLASON L E, GAO J, ABBOTT W M, et al. Functionalarteries grown in vitro [ J ] . Science, 1999 , 284(5413) : 489 -493.
  • 3GAO J, NIKLASON L,LANGER R. Surface hydrolysis of j.ly(gly-colic acid) meshes increases the seeding density of vascular smoothmuscle cells[ J]. J Biomed Mater Res, 1998 , 42(3) : 417 -424.
  • 4DAHL S L, KYPSON A P, LAWSON J H,et al. Readily availa-ble tissue - engineered vascular grafts[ J]. Sci Transl Med, 2011,3(68) : 68r~69r.
  • 5CLEARY M A, GEK;ER E, GRADY C, et al. Vascular tissueengineering: the next generation[ J]. Trends Mol Med, 2012, 18(7): 394-404.
  • 6GUI L, ZHAO L, SPENCER R W, et al. Development of novelbiodegradable polymer scaffolds for vascular tissue engineering[J]. Tissue Eng Part A,2011,17(9/10) : 1191 -1200.
  • 7GRAYSON W L, MARTENS T P, ENG G M, et al. Biomimeticapproach to tissue engineering[ J]. Semin Cell Dev Biol, 2009,20(6): 665 -673.
  • 8Dickinson LE, Kusuma S, Gerecht S. Reconstructing the differentiation niche of embryonic stem ceils using biomaterials[J].Macromol Biosci,2011,11(1):36-49.
  • 9Zaat S,Broekhuizen C,Riool M.Host tissue as a niche for biomaterial-associated infection[J]. Future microbiol, 2010,5(8) : 1149-1151.
  • 10Barberi I.,Scicchitano BM,De Rossi M,et al. Age-dependent alteration in muscle regeneration:the critical role of tissue niche[J]. Biogerontology,2013.[Epub ahead of print].

共引文献4

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部