期刊文献+

论大数据与我国高等教育发展的相互作用 被引量:11

On the Interaction Between Big Data and the Development of Higher Education in China
下载PDF
导出
摘要 在高等教育进步发展的过程中,大数据始终与之相依相伴并为高等教育的创新和发展发挥着巨大的影响作用,为高等教育质量的提升、普及化、个性化等愿景的实现提供着强有力的支撑。大数据在推动高等教育改革创新中尤其以对高等教育教学改革、引发高等教育内外部关系革新而引人瞩目,与此同时,高等教育在促进大数据平台建设和运用方面彰显着不可替代的重要力量。 In the process of the development of higher education, the big data is always accompanied by the dependence and plays a great role in the innovation and development of higher education. It provides a strong support for the improvement of the quality of higher education, the popularization and the realization of the individual. Big data in promoting reform and innovation in higher education, especially in higher education reform, higher education and the internal and external relations reform and lead people attention, at the same time, higher education in promoting the construction and use of big data platform is an irreplaceable important force.
作者 任一明 贾同
出处 《东北师大学报(哲学社会科学版)》 CSSCI 北大核心 2016年第4期171-175,共5页 Journal of Northeast Normal University(Philosophy and Social Science Edition)
基金 国家社科基金重大项目(11&ZD069) 国家社科基金一般项目(BHA090024) 全国教育科学"十一五"规划2009年度教育部重点课题(DGA090151) 重庆市教委教学改革研究重大项目(渝教高[2015]50)
关键词 大数据 高等教育 相互作用 Big Data Higher Education Interaction
  • 相关文献

参考文献7

二级参考文献27

  • 1Brynjolfsson, E. Erik Brynjolfsson on Big Data: A Revolution in Decision-Making Improves Productivity [EB/OL]. http://mitsloanexperts. mit.edu/erik -brynjolfsson -on -big -data -a -revolution -in -decision - making-improves-productivity/.
  • 2Schleicher, A. Big Data and PISA [EB/OL]. http://www. huffingtonpost.Com/andreas -schleicher/big -data -and -pisa_b_3633558. html.
  • 3上海市教育委员会.2012年绿色指标推进情况[EB/OL].http://www.shmee.gov.cn/html/article/201306/68754.php.
  • 4Lohr, S. The Age of Big Data [N]. New York Times, 2012-2-11 (10).
  • 5Grafsgaard, J., K. Boyer & J. Lester. "Toward a Machine Learning Framework for Understanding Affective Tutorial Interaction" [A]. In Proceedings of the 1 lth International Conference on Intelligent Tutoring Systems, 2012,52-58.
  • 6Bienkowski, M., M. Feng & B. Means. Enhancing Teaching and Learning Through Educational Data Mining and Learning Analytics: An Issue Brief [M]. Washington, DC:Office of Educational Technology, U. S. Department of Education,2012.
  • 7Corbett, A. & J. Anderson. Knowledge Tracing: Modeling the Acquisition of Procedural Knowledge [J]. User Modeling and User- Adapted Interaction, 1995,4,253-278.
  • 8Calvani, A.,A. Fini, M. Molino, & M. Ranieri. Visualizing and monitoring effective interactions in online collaborative groups. British Journal of Educational Technology,2009,41 (2), 213-226.
  • 9Beck, J & J. Mostow. "'How who should practice: Using learning decomposition to evaluate the efficacy of different types of practice for different types of students" [A]. In Proceedings of the 9th International Conference on Intelligent Tutoring Systems, 2008,353 - 362.
  • 10Hamilton, L., R. Halverson, S. Jackson, E. Mandinach,.J. Snpovitz, & J. Wayman. Using student achievement data to support instructional decision making [M]. Washington, DC: National Center for Education Evaluation and Regional Assistance, Institute of Education Sciences, U.S. Department of Education,2009.

共引文献744

同被引文献113

引证文献11

二级引证文献80

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部