期刊文献+

基于椭圆几何模型的胸部电阻抗成像 被引量:1

Electrical impedance tomography in chest based on the elliptical geometry model
下载PDF
导出
摘要 电阻抗成像技术是通过测量生物体表面电压,计算生物体横截面的电阻抗分布。由于生物体的边界形状是各异的,尤其在胸部应用中,建立不同边界形状会影响成像的精度和清晰度,所以构建合适的边界形状是求解EIT问题的前提。根据实际视觉效果,椭圆几何比较符合胸部边界形状,由于圆形几何的构建和有限元划分相当成熟,本文通过保角变换方法将圆形转换为椭圆几何,并分别进行两种几何与原始胸部形状的分析比较,实验结果表明,在求解正问题时建立椭圆边界形状分析胸部结构精度高,在求解逆问题时重建误差小。 Electrical impedance tomography (EIT ) is a medical imaging modality that is used to compute the conductivity distribution through measurements on the cross-section of a body part .As a result the boundary shape of the organisms is different ,building different boundary shape will affect the precision and clarity of imaging ,so to build a suitable boundary shape is the precondition of solving the forward problem of EIT ,especially in the chest .According to the actual visual effect ,the elliptical geometry conforms to the chest boundary shape ,due to the construction and finite element method of a circular shape is quite mature ,this article uses conformal mapping method convert circular to elliptical geometry ,and then analyzes and compares the two shapes respectively with the original chest geometry ,the results showed that to build elliptical geometry in analyzing the forward problem of chest structure has higher precision , in solving the inverse problem has smaller reconstruction error .
出处 《电子测量技术》 2016年第6期81-84,共4页 Electronic Measurement Technology
关键词 电阻抗成像技术 椭圆几何 保角变换 正问题 EIT elliptical geometry conformal mapping forward problem
  • 相关文献

参考文献9

  • 1杨琳,徐灿华,付峰,代萌,董秀珍.一种基于加权频差阻尼最小二乘的准静态EIT算法[J].仪器仪表学报,2013,34(8):1879-1885. 被引量:13
  • 2SAKA B, YILMAZ A. Elliptic cylinder geometry for distinguishability analysis in impedance tomography[J]. IEEE Transactions on Biomedical Engineering, 2004, 51(1) : 126-132.
  • 3YILMAZ A, AKDOGAN K E, SAKA B. Application of conformal transformation to elliptic geometry for electric impedance tomography [ J ]. Medical Engineering & Physics, 2008, 30 ( 2 ) : 144-153.
  • 4JAIN H, ISAACSON D, EDIC P, et al. Electrical impedance tomography of complex conductivity distribution with noncircular boundary [J]. IEEE Transactions on Biomedical Engineering, 1997, 44 ( 11 ) : 1051-1060.
  • 5BOYLE A, ADLER A, LIONHEART W R B. Shape deformation in two dimensional electrical impedance tomography [J]. IEEE Transactions on Medical Imaging, 2012, 31(12) :2185-2193.
  • 6BOYLE A, ADLER A. The impact of electrode area, contact impedance and boundary shape on E1T images[J]. Physiological Measurement, 2011, 32(7) :745-754.
  • 7YAN P M, YAO J H, Payne R A, et ah Study on the conformal conversion in the open electrical impedance tomography[C]. IEEE Nuclear Science Symposium and Medical Imaging Conference, 2014: 49.
  • 8CHEN X Y, WANG H X. Comparisons between circle and structural models in lung ventilation reconstruction by electrical impedance tomography[C]. International Conference on Biomedical Engineering and Informatic, 2008:53-57.
  • 9ADLER A, LIONHEART W R B. Uses and abuses of EIDORS: An extensible software base for EIT[J]. Physiological Measurement, 2006, 27 (5) : S25-S42.

二级参考文献16

  • 1WANG H, HE Y, SHI X T, et al. Comparative study on the dielectric properties between living and nonliving from human and animal livers [ J ]. WC2012 World Congress on Medical Physics and Biomedical Engineering,2012.
  • 2GABRIEL C, PEYMAN A, GRANT E H. Electrical con- ductivity of tissue at frequencies below 1 MHz[ J]. Phys. Med. Biol. ,2009,54:4863-4878.
  • 3TANG CH, YOU F SH, DONG X ZH. Correlation between structure and resistivity variations of the live human skull[ J ]. IEEE Transactions on Biomedical Engineering, 2008,55 (9) :2286-2292.
  • 4ROMSAUEROVA A, MCEWAN A, FABRIZI L, et al. Evaluation of the performance of the multi-frequency elec- trical impedance tomography (MFEIT) intended for ima-ging acute stroke [ C ]. Proceedings of IFMBE, 2007, 17(13) :543-547.
  • 5SHI X T, YOU F SH, XU C H, et al. High precision mul- tifrequency electrical impedance tomography system and preliminary imaging results on saline tank [ C ]. Engineer- ing in Medicine and Biology 27th Annual Conference, 2005 : 1492-1495.
  • 6SEO J K, LEE J, KIM S W, et al. Frequency-difference electrical impedance tomography (fdEIT) :Algorithm de- velopment and feasibility study I J]. Physiol. Meas., 2008,29:929-944.
  • 7HORESH L. Some novel approaches in modelling and im- age reconstruction for multi-frequency electrical imped- ance tomography of the human brain [ D ]. University Col- lege London,2006.
  • 8XU SH W, DAI M, XU C H, et al. Performance evaluation of five types of Ag/AgC1 bio-electrodes for cerebral elec- trical impedance tomography [ J ]. Annals of Biomedical Engineering,2011,7(39) :2059-2067.
  • 9PACKHAM A, KOO H, ROMSAUEROVA A, et al. Com- parison of frequency difference reconstruction algorithms for the detection of acute stroke using EIT in a realistic head-shaped tank [ J ]. Physiol. Meas., 2012, 33: 767-786.
  • 10CHENEY M, ISAACSON D, NEWELL J C, et al. NOS- ER: an algorithm for solving the inverse conductivity problem [ J ]. Int. J. Imag. Syst. Teeh. , 1990 (2) :66-75.

共引文献12

同被引文献10

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部