期刊文献+

基于优化字典学习算法的压缩数据收集 被引量:1

Optimized dictionary learning algorithm for compressive data gathering
下载PDF
导出
摘要 为了提高压缩数据收集对多样化传感数据的适应能力,同时抑制环境噪声对数据收集精度的影响,提出了一种优化字典学习算法来构造压缩数据收集中的稀疏字典。理论分析表明在压缩数据收集中由环境噪声导致的数据收集误差和稀疏字典的自相干程度正相关。为此在字典学习的过程中引入了自相干惩罚项来抑制环境噪声对数据收集精度的影响。该惩罚项还能减少字典学习过程中对训练数据的过拟合,从而进一步提高了该算法的稀疏表示能力。实验表明,该算法的稀疏表示能力高于同类字典学习算法,而且能有效地抑制环境噪声对压缩数据收集精度的影响。 To improve the adaptability of compressive data gathering for various classes of sensory data,and to reduce the recovery error caused by environmental noise,an optimized dictionary learning algorithm was proposed to adaptively construct the sparse dictionary in compressive data gathering. Theoretical analysis shows that in compressive data gathering the recovery error caused by environmental noise is positively correlated to the self-coherence of the sparse dictionary. Therefore,in order to alleviate the recovery error caused by environmental noise,the proposed algorithm introduces a penalty term into the dictionary learning procedure to reduce the self-coherence of the learned dictionary. The introduced penalty term can also alleviate the overfitting on the training data during the dictionary learning procedure,which further improves the sparse representation performance of the learned dictionary. The experimental results verify that the proposed method achieves better sparse representation performance than other dictionary learning methods,and can alleviate the recovery error caused by environmental noise.
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2016年第6期1203-1209,共7页 Journal of Beijing University of Aeronautics and Astronautics
基金 国家自然科学基金(61371135)~~
关键词 无线传感器网络(WSNs) 压缩感知 稀疏表示 数据收集 字典学习 wireless sensor networks(WSNs) compressive sensing sparse representation data gathering dictionary learning
  • 相关文献

参考文献15

  • 1RAJAGOPALAN R, VARSHNEY P K. Data-aggregation tech- niques in sensor networks:A survey [ J]. IEEE Communications Surveys and Tutorials,2006,8 ( 4 ) :48-63.
  • 2CANDES E J, WAKIN M B. An introduction to compressive sampling [ J ]. IEEE Signal Processing Magazine ,2008,25 ( 2 ) : 21-30.
  • 3DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006,52 ( 4 ) : 1289-1306.
  • 4BARANIUK R G. Compressive sensing [ J ]. IEEE Signal Pro- cessing Magazine, 2007,24 ( 4 ) : 118 -121.
  • 5LUO C,WU F, SUN J, et al. Compressive data gathering for large-scale wireless sensor networks [ C ] //Proceedings of the 15th Annual International Conference on Mobile Computing and Networking. Washington, D. C. : ACM ,2009 : 145-156.
  • 6LUO C,WU F,SUN J, ct a]. Efficient measurement generation and pervasive sparsity for compressive data gathering[ J]. IEEE Transactions on Wireless Communications, 2010, 9 ( 12 ): 3728 -3738.
  • 7陈正宇,杨庚,陈蕾,周强.基于压缩感知的WSNs长生命周期数据收集方法[J].电子与信息学报,2014,36(10):2343-2349. 被引量:10
  • 8WU X P,WANG Q S,LIU M Y. In-situ soil moisture sensing: Measurement scheduling and estimation using sparse sampling [ J]. ACM Transactions on Sensor Networks, 2015, 11 (2) : 26 : 1-26:29.
  • 9TANG Y,ZHANG B,JING T, et al. Robust compressive data gathering in wireless sensor networks[ J]. IEEE Transactions on Wireless Communications,2013,12(6) :2754-2761.
  • 10AHARON M,ELAD M, BRUCKSTEIN A. K-SVD: An algo- rithm for designing overcomplete dictionaries for sparse repre- sentation[ J]. IEEE Transactions on Signal Processing,2006, 54(11) :4311-4322.

二级参考文献4

共引文献9

同被引文献4

引证文献1

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部