期刊文献+

A spectral projection method for transmission eigenvalues 被引量:2

A spectral projection method for transmission eigenvalues
原文传递
导出
摘要 We consider a nonlinear integral eigenvalue problem, which is a reformulation of the transmission eigenvalue problem arising in the inverse scattering theory. The boundary element method is employed for discretization, which leads to a generalized matrix eigenvalue problem. We propose a novel method based on the spectral projection. The method probes a given region on the complex plane using contour integrals and decides whether the region contains eigenvalue(s) or not. It is particularly suitable to test whether zero is an eigenvalue of the generalized eigenvalue problem, which in turn implies that the associated wavenumber is a transmission eigenvalue. Effectiveness and efficiency of the new method are demonstrated by numerical examples. We consider a nonlinear integral eigenvalue problem, which is a reformulation of the transmission eigenvalue problem arising in the inverse scattering theory. The boundary element method is employed for discretization, which leads to a generalized matrix eigenvalue problem. We propose a novel method based on the spectral projection. The method probes a given region on the complex plane using contour integrals and decides whether the region contains eigenvalue(s) or not. It is particularly suitable to test whether zero is an eigenvalue of the generalized eigenvalue problem, which in turn implies that the associated wavenumber is a transmission eigenvalue. Effectiveness and efficiency of the new method are demonstrated by numerical examples.
出处 《Science China Mathematics》 SCIE CSCD 2016年第8期1613-1622,共10页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China (Grant Nos. 11501063 and 11371385) National Science Foundation of USA (Grant No. DMS-1521555) the US Army Research Laboratory and the US Army Research Office (Grant No. W911NF-11-2-0046) the Start-up Fund of Youth 1000 Plan of China that of Youth 100 plan of Chongqing University
关键词 spectral projection boundary element method transmission eigenvalues 矩阵特征值问题 传输特征 投影方法 广义特征值问题 散射理论 边界元法 非线性 离散化
  • 相关文献

参考文献33

  • 1An J, Shen J. A Fourier-spectral-element method for transmission eigenvalue problems. J Sci Comput, 2013, 57: 670-688.
  • 2Austin A P, Kravanja P, Trefethen L N. Numerical algorithms based on analytic function values at roots of unity. SIAM J Numer Anal, 2014, 52:1795-1821.
  • 3Beyn W J. An integral method for solving nonlinear eigenvalue problems. Linear Algebra Appl, 2012, 436:3839-3863.
  • 4Cakoni F, Colton D, Monk P, et al. The inverse electromagnetic scattering problem for anisotropic media. Inverse Problems, 2010, 26:074004.
  • 5Cakoni F, Monk P, Sun J. Error analysis of the finite element approximation of transmission eigenvalues. Comput Methods Appl Math, 2014, 14:419-427.
  • 6Colton D, Kress R. Inverse Acoustic and Electromagnetic Scattering Theory, 3rd ed. New York: Springer-Verlag, 2013.
  • 7Colton D, Monk P, Sun J. Analytical and computational methods for transmission eigenvalues. Inverse Problems, 2010, 26:045011.
  • 8Cossonni~re A. Valeurs propres de transmission et leur utilisation dans l'identification d'inclusions k partir de mesures ~lectromagn~tiques. PhD Thesis. Toulouse: Universit~ de Toulouse, 2011.
  • 9Cossonni~re A, Haddar H. Surface integral formulation of the interior transmission problem. J Integral Equations Appl, 2013, 25:341-376.
  • 10Gintides D, Pallikarakis N. A computational method for the inverse transmission eigenvalue problem. Inverse Problems, 2013, 29:104010.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部