期刊文献+

基于互联网搜索数据的甘肃省旅游客源地时空分析 被引量:6

Spatiotemporal Analysis on Tourist Source of Gansu Province Based on Internet Search Data
原文传递
导出
摘要 传统的统计手段可以获得旅游城市或景点的游客量,而无法获得旅游客源地游客量,本文首先把互联网搜索数据与现实游客行为之间进行关联和映射,然后将搜索量最高关键词通过自由组合和非线性多项式拟合,发现3个词组合时与现实游客行为之间R2高达0.999,最后反演出2011—2014年中国(港澳台除外)各省、直辖市和自治区至甘肃省旅游的人数,进行甘肃省旅游客源地时空数据可视化、时空数据异常探测、时空过程分析等,帮助旅游部门了解游客的来源及去处、游客的出行规律和爱好偏向,做出有针对性的决策。 The tourist number of a city or a scenic spot can be obtained by traditional statistical methods,while those methods could not gain the visitor number of the tourist source.In this paper,we related and mapped the data searched from Internet and the real tourists behavior,then fitted the keywords topped the list with real behaviors by free combination and non-linear polynomial.The results showed that the R2 between the three phrases combination and the real tourists behavior was up to 0.999.Based on the results,we can deduce the number of tourists from2011 to 2014 from31 regions to Gansu province in china,except for Hong Kong,Macao and Taiwan.Besides,spatiotemporal data visualization of the tourist source in Gansu,anomaly detection of time and space data,and analysis of the spatiotemporal process were conducted.On the basis of the work above,the tourism department could better understand the source and destination of tourists,their travel patterns and their tendencies,so that the targeted and personalized decisions could be made.
出处 《中国沙漠》 CSCD 北大核心 2016年第3期857-864,共8页 Journal of Desert Research
基金 国家自然科学基金项目(91125005) 国家基础科学人才培养基金冰川冻土学科点人才培养基金项目(J1210003/J0109)
关键词 互联网搜索数据 客源地 时空分析 Internet search data tourist source spatiotemporal analysis
  • 相关文献

参考文献32

  • 1Lambert F. Online community information seeking: lhc queries of three communities in Southwestern Ontario[J]. Information Processing - Management, 2010,46 (3) : 343-- 361.
  • 2Ortiz-Cordova A, Jansen B. Classifying web search queries in order to identify high revenue generating customers[J]. Jour- nal of the American Society for Information Sciences and Technology, 2012,63 (7) : 1426-- 1441.
  • 3McLaren N, Shanbhoge R. Using Internet Search Data as Eco nomic Indicators[R]. London, UK: Bank of England, 2011: 134--140.
  • 4Choi H, Varian H. Predicting Initial Claims for Unemploy- ment Benefits[R]. Google Inc. ,2009.
  • 5Vosen S,Schmidt T. Forecasting private consumption: survey-based indicators vs. Google trends[J].Journal of Forecasting, 2011,30(6):565--578.
  • 6Kholodilin K A, Podstawski M, Siliverstovs B. Do Google Searches Help in Now Casting Private Consumption? A Real Time Evidence for the US[R]. Berlin, Germany: German In stitute of Economic Research, 2010.
  • 7Wu L,Brynjolfsson E. The Future of Prediction: How Google Searches Foreshadow Housing Prices and Sales [R]. Cam- bridge, USA: MIT, 2010.
  • 8Webb G K. Internet search statistics as a source of business intelligence=Searches on foreclosure as an estimate of actual home foreclosures[J]. Issues in Information Systems, 2009,10 (2) :82--87.
  • 9Askitas N, Zimmermann K F. Google econometrics and unem ployment forecasting[J]. Applied Economies Quarterly,2009, 55(2) .. 107--120.
  • 10Baker S R,Fradkin A. What drives job search? evidence from Google search data[Z]. SIEPR Discussion Paper No. 10--020.Stanford University, 2011.

二级参考文献21

共引文献433

引证文献6

二级引证文献75

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部