期刊文献+

Single frame super-resolution reconstruction based on sparse representation

基于稀疏表示的单帧超分辨率重建(英文)
下载PDF
导出
摘要 In order to effectively improve the quality of recovered images, a single frame super-resolution reconstruction method based on sparse representation is proposed. The combination method of local orientation estimation-based image patch clustering and principal component analysis is used to obtain a series of geometric dictionaries of different orientations in the dictionary learning process. Subsequently, the dictionary of the nearest orientation is adaptively assigned to each of the input patches that need to be represented in the sparse coding process. Moreover, the consistency of gradients is further incorporated into the basic framework to make more substantial progress in preserving more fine edges and producing sharper results. Two groups of experiments on different types of natural images indicate that the proposed method outperforms some state-of- the-art counterparts in terms of both numerical indicators and visual quality. 为了有效提高重建后的图像质量,提出了一种基于稀疏表示的单帧超分辨率重建方法.首先,该方法使用一种基于局部方向估计的图像块聚类和主元分析相结合的字典学习方法来获得一系列具有不同方向的几何字典.然后,给每一个待处理的图像块自动分配一个具有最近方向的字典,并据此进行稀疏编码.此外,为了在图像锐化和边缘保持方面取得进一步的提高,将梯度一致性加入提出的基本框架.在自然图像上进行的2组实验表明:提出的方法在视觉和数字指标方面均优于一些先进的同类方法.
出处 《Journal of Southeast University(English Edition)》 EI CAS 2016年第2期177-182,共6页 东南大学学报(英文版)
基金 The National Natural Science Foundation of China(No.61374194,No.61403081) the National Key Science&Technology Pillar Program of China(No.2014BAG01B03) the Natural Science Foundation of Jiangsu Province(No.BK20140638) Priority Academic Program Development of Jiangsu Higher Education Institutions
关键词 single frame super-resolution reconstruction sparse representation local orientation estimation principalcomponent analysis (PCA) consistency of gradients 单帧超分辨率重建 稀疏表示 局部方向估计 主元分析 梯度一致性
  • 相关文献

参考文献24

  • 1Zeng W L, Lu X B. A generalized DAMRF image modeling for superresolution of license plates[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13 (2): 828 - 837.
  • 2Park S, Park M, Kang M. Super-resolution image reconstruction: A technical overview[J]. IEEE Signal Processing Magazine, 2003, 20 (3): 21 - 36.
  • 3Keys R. Cubic convolution interpolation for digital image processing [J]. IEEE Transactions on Acoustics. Speech and Signal Processing, 1981.9(6): 1153-1160.
  • 4Chan T F, Ng M K, Yau A C, et al. Super-resolution image reconstruction using fast inpainting algorithms [J]. Applied and Computational Harmonic Analysis. 2007. 23 (1): 3 - 24.
  • 5Rudin L, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms [J]. Physica D: Nonlinear Phenomena, 1992, 60 (/2/3/4): 259-268. 001: 10. 101 6/0167-2789(92) 90242-f.
  • 6Osher S, Burger M, Goldfarb 0, et al. An iterative regularization method for total variation-based image restoration[J]. Multiscale Modeling & Simulation, 2005, 4( 2) : 460 -489.
  • 7Ren Z, He C, Zhang Q. Fractional order total variation regularization for image super-resolution [J]. Signal Processing, 2013, 93 (9): 2408 - 2421.
  • 8Zeng W L, Lu X B, Fei S M. Image super-resolution employing a spatial adaptive prior model [J]. Neurocomputing, 2015, 162: 218 - 233.
  • 9Cande E J, Wakin M B. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 21 - 30.
  • 10Yang J, Wright J, Huang T, et al. Image super-resolution as sparse representation of raw image patches [C]//IEEE Conference on Computer Vision and Pattern Recognition. Anchorage USA, 2008: 1-8.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部