期刊文献+

基于机器视觉的电机换向器质量在线检测系统开发 被引量:4

A Development of On-line Quality Defection System for Electric Machinery Commutator Using Machine Vision
下载PDF
导出
摘要 电机换向器质量检测是换向器生产线中的一个重要工序,但其仍采用人工方式,存在检测效率低、漏检率高等问题;针对此问题,运用图像处理和机器视觉技术,开发换向器质量在线视觉检测系统;该系统针对生产过程工艺多变,造成形状检测标准不一致问题,提出自适应学习模板方法;在轴孔孔径检测,提出基于Freeman链码改进的孔径快速检测算法;在端面缺陷中,提出基于改进视觉注意力模型的端面缺陷检测方法;实验结果表明,系统检测精度达到99.80%,漏检率为0%,F-measure值为99.89%;该系统能够快速有效检测换向器存在的外观质量问题,可满足换向器在线质量检测需求。 A quality detection is an important process in the production line of electric machinery commutator.The inspecting mode still dependent on human,leads low speed of detection and low accuracy.A system for on-line inspection quality of electric machinery commutator is developed using a machine vision technology.Aiming at the problems where exists different inspecting standards of commutator shape because of the production process,an approach of adaptive learning templet to detect the shape is proposed.An improved method to detect the diameter of axle hole is based on Freeman chain code.Aimming to defect flaw of end-surface of commutator,an approach based on a vision-attention model is proposed.Experimental results show that inspection accuracy of the proposed system reaches 99.80%,miss rate of 0%,and the F-measure value of 99.89%.The system can quickly and effectively detect appearance quality of the commutator,which can meet the needs of the commutator line quality inspection.
出处 《计算机测量与控制》 2016年第7期56-61,共6页 Computer Measurement &Control
基金 国家自然科学基金(21176089 21376091)
关键词 换向器质量 机器视觉 图像处理 在线检测 commutator quality machine vision image processing on-line defect
  • 相关文献

参考文献4

二级参考文献128

  • 1陈晓飞,王润生.目标骨架的多尺度树表示[J].计算机学报,2004,27(11):1540-1545. 被引量:4
  • 2段红,徐晓峰.基于SUSAN算法的孔径几何参数检测方法研究[J].传感技术学报,2004,17(4):572-575. 被引量:4
  • 3刘文予,刘俊涛.基于骨架树描述符匹配的物体相似性度量方法[J].红外与毫米波学报,2005,24(6):432-436. 被引量:6
  • 4刘蕴辉,刘铁,王权良,罗四维.基于图像处理的铁轨表面缺陷检测算法[J].计算机工程,2007,33(11):236-238. 被引量:24
  • 5Blum H. Biological shape and visual science (Part I). Jour- nal of Theoretical Biology, 1973, 38(2): 205-287.
  • 6Belongie S, Malik J, Puzicha J. Shape matching and ob- ject recognition using shape contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(4): 509--522.
  • 7Daliri M R, Torre V. Robust symbolic representation for shape recognition and retrieval. Pattern Recognition, 2008, 41(5): 1782-1798.
  • 8Ling H B, Jacobs D W. Using the inner-distance for classi- fication of articulated shapes. In: Proceedings of the 2005 IEEE Conference on Computer Vision and Pattern Recogni- tion (CVPR). Washington, DC, USA: IEEE, 2005. 719-726.
  • 9Ling H B, Jacobs D W. Shape classification using the inner- distance. IEEE Transactions on Pattern Analysis and Ma- chine Intelligence, 2007, 29(2): 286-299.
  • 10Biswas S, Aggarwal G, Chellappa R. Efficient indexing for articulation invariant shape matching and retrieval. In: Pro- ceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Minneapolis, MN: IEEE, 2007. 1-8.

共引文献133

同被引文献35

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部