期刊文献+

一类p-Laplacian方程的Dirichlet问题

A Class of Asymptotically Linear Dirichlet Boundary Value Problem
下载PDF
导出
摘要 通过山路引理,研究形如-△_pu=f(x,u),x∈Ω/u=0,x∈(?)Ω的Dirichlet边界值条件的p-Laplacian方程正解的存在性. Using the Mountain pass lemma, we obtain a positive solution for a class of p-Laplacianequation with a Dirichlet boundary value condition.
作者 高婷梅
出处 《北京教育学院学报(自然科学版)》 2016年第2期1-4,共4页 Journal of Beijing Institute of Education
基金 陕西理工学院科研基金项目(SLGKY15-47)
关键词 山路引理 渐近线性 正解 mountain pass lemma asymptotically linear positive solution
  • 相关文献

参考文献7

  • 1H S Zhou. Existence of asymptotically linear Dirichlet problem [J]. Nonlinear Analysis ,2001,44 (7):909-918.
  • 2G Li, Z Zhang, H S Zhou. Asymptotically linear Dirichlet problem for the p-Laplacian [J]. Nonlinear Analysis,2001,43(8): 1043-1055.
  • 3Z Zhang, S Li, W Feng. On an asymptotically linea elliptic Dirichlet problem [J].Abstract and Applied Analysis,2002,7(10):509-516.
  • 4何万生,裴瑞昌.p-Laplacian方程的渐近线性Dirichlet问题[J].河北师范大学学报(自然科学版),2006,30(1):21-24. 被引量:2
  • 5Wang J, Tang C L. Existence and multiplicity of solutions for a class of superlinear Laplician equations [J]. BoundValue Pr〇bl,2006,12(1):1-12.
  • 6Costa D G, Miyagaki O H. Nontriivial solutions for perturbations of the Laplician on unbounded domains [J]. Math.Anal. Applications,1995,193:737-755.
  • 7J L Vazquez. A strong maximum principle for some quasilinear elliptic equations[J]. Applied Mathematics and Optimization,1984,12(3):191-202.

二级参考文献6

  • 1AMEROSETTI A, RABINOWITZ P H. Dual varitional methods in critical points theory and applications[J].J Funct Anal, 1973,14 : 349-381.
  • 2BREZIS H, NIRENBERG L. Positive solutions of nonlinear elliptic equation involving sobolev exponents[J]. Commpure Appl Math, 1983,36 : 437-477.
  • 3RABMOWITZ P H. Minmax Methods in Critical Point Theory with Applications to Differential Equations[M]. Rhode Island. American Mathematical Society, 1986.
  • 4STUART C A. Self-trapping of an electromagnetic field and bifurcation from the essential spectrum [J]. Arch Rat Mech Anal, 1991,113:65-96.
  • 5HOU Huan-song. Asympotically linear Dirichlet problem for the p-Laplacian [J]. Nonlinear Analysis,200l, 43.1043-1053.
  • 6MAWHIN J, WILLEM M. Critical Point Theory and Hamiltonian Systems[M]. New York: Springer-verlag, 1999.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部