期刊文献+

二阶盲辨识算法在多类运动想象脑电信号特征提取中的应用

Research on Feature Extraction in Multi-Class Motor Imagery EEG Based on the SOBI in the Independent Experiments
原文传递
导出
摘要 为提高多任务运动想象脑电信号特征提取的准确率,在分析比较共空间模式算法的基础上,采用一种基于二阶盲辨识(Second 0rder Blind Identification,SOBI)的脑电信号特征提取方法,对四任务运动想象脑电信号进行处理,提取了能够反映不同任务类别的特征。在参考国际竞赛数据采集实验方案的基础上进行自主实验设计,采集了多名受试者的四任务运动想象脑电数据,处理结果表明:分类准确率达到了85.4%,验证了自主实验的可行性,为实现在线BCI系统奠定了实验基础,也为多任务运动想象BCI系统实现提供算法支撑。 In order to improve the accuracy of feature extraction in Multi-Class Motor Image- ry EEG in the analysis and comparison of common spatial patterns CSP algorithm. Present a EEG feature extraction method is presented based on the SOBI (Second Order Blind Identifi- cation). Four motor imagery task EEG signals are processed to extract the different catego- ries of tasks which can reflect the characteristics. Based on the existing laboratory condi- tions,the independent experience in reference to the international competition experimental data acquisition scheme is designed. More than four subjects Imaginary motion task data are collected. The results show that the classification accuracy rate reaches 85.4% and the feasi- bility of independent experiments is verified. The support algorithm implementation for Multi-class Motor Imagery BCI system is also proposed.
出处 《武警工程大学学报》 2016年第4期8-11,共4页 Journal of Engineering University of the Chinese People's Armed Police Force
关键词 运动想象 脑电信号 二阶盲辨识 特征提取 motor imagery EEG SOBI feature extraction
  • 相关文献

参考文献5

  • 1赵礼翔,刘国庆.基于Givens变换矩阵的时间结构信号盲源分离新算法[J].计算机科学,2014,41(12):78-81. 被引量:3
  • 2陈国琴.基于通道扩维的多类CSP算法及在脑一机接口中的应用研究[D].南昌:南昌大学,2014.
  • 3周宗谭.独立成分分析[M].北京:电子工业出版社,2007.
  • 4Emily B J, Coffey, Anne-Marie Brouwer, et al. Brain-ma- chine Interfaces in Space: Using Spontaneous Rather than In- tentionally Generated Brain Signal[J].Acta Astronautica, 2010, 67(5) :1-11.
  • 5Wolpaw J R, Birbaumer N, Cfarland D J, et al. Brain-com- puter Interfaces for Communication and Control[J]. Clinical Neurophysiology, 2002, 113(6): 767-791.

二级参考文献16

  • 1Koldovsky Z,Tichavsky P. Time-domain blind separation of au- dio sources on the basis of a complete ICA decomposition of an observation space [J]. Audio, Speech,and Language Processing, IEEE Transactions on,2011,19(2) :406.
  • 2Gao Jing-bo, Zhu Xu, Lin Hai, et al. Independent component a- nalysis based semi-blind I/Q imbalance compensation for MIMO OFDM systems [J]. IEEE Transactions on Wireless Communi- cations,2010,9(3) :914.
  • 3Gao Jing-bo, Zhu Xu, Nandi A K. Independent component analy- sis for multiple-input multiple-output wireless communication systems [J]. Signal Processing, 2011,91 (4) : 607.
  • 4Kleinsteuber M,Shen H. Blind source separation with compres- sively sensed linear mixtures [J]. Signal Processing Letters, IEEE, 2012,19(2) .. 107.
  • 5Xie Sheng-li, Yang Liu, Yang Jun-mei, et al. Time-frequency ap- proach to underdetermined blind source separation [J]. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23(2) :306.
  • 6Tong L, Soon VC, Huang Yih-fang, et al. AMUSE: A new blind identification algorithm[C]~ // Circuits and Systems. New Or- leans, LA: IEEE, 1990 : 1784-1787.
  • 7Belouchrani A, Abed-Meraim K, Cardoso J F, et al. A blind source separation technique using second-order statistics [J]. IEEE Transactions on Signal Processing, 1997,45 (2) : 434.
  • 8Rutledge D N,Jouan-Rimbaud Bouveresse D. Independent Com- ponents Analysis with the JADE algorithmI[J]. TrAC Trends in Analytical Chemistry, 2013,50 : 22.
  • 9Wang J ian-gong, Shen Yue-hong, Li Hui, et al. A Separation Al- gorithm for Sources with Temporal Structure Only Using Sec- ond-order Statistics [J]. Radioengineering, 2013,22 (3) : 861.
  • 10Watkins D S. Fundamentals of Matrix Computations(Second E- dition) [M]. New York:John Wiley ~ Sons, 2002:192-194.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部