期刊文献+

GE LM2500+SAC型燃气轮机压气机积垢判据的确定 被引量:12

Indicators for determining compressor fouling of GE LM2500+SAC gas turbines
原文传递
导出
摘要 及时发现燃气轮机压气机叶片积垢故障并进行水洗作业,能够降低机组的运行维护成本,有助于避免其他气路故障的发生。以2台天然气长输管道LM2500+SAC型燃气轮机为例,建立了基于气路热力参数的燃气轮机压气机性能计算模型,分析压气机水洗作业前后压气机等熵效率、进气质量流量、耗功等的变化,结果表明:水洗作业后2台压气机等熵效率分别提升0.9%、1.5%,但每运行2 000 h将会带来约1%的压气机等熵效率衰减,在叶片表面积垢达到一定程度后效率衰减趋于稳定;压气机积垢每造成1%的等熵效率衰减,将造成约2%的折合质量流量衰减;水洗对降低机组功耗有明显的效果,但环境温度升高也会导致压气机耗功增加,因此耗功并不适合作为压气机积垢的判据,可采用同压比下等熵效率衰减、同转速下压气机质量流量衰减作为判断压气机是否积垢的依据。 Timely detection of compressor fouling of gas turbines and removal of such fault through washing can effectively reduce operation and maintenance costs and also eliminate possibilities of other faults in gas lines. With two LM2500+SAC gas turbines for long-distance gas pipelines as examples, a calculation model for compressor performances of gas turbines based on thermal parameters of gas lines was established to analyze changes in isentropic efficiency, mass flow rate of in- coming gases and energy consumptions before and after washing of such compressors. Research results show that, after washing operations, isentropic efficiencies of two compressors enhance by 0.9% and 1.5%, respectively. However, the isentropic efficiencies decline by approximately 1% for every 2 000 h in operation and tend to be stable when the fouling on the blade surface reaches certain extent. Whenever the isentropic efficiencies decline by 1%, equivalent mass flow rate decreases by approximately 2%. Washing operations may effectively reduce energy consumption, but increases in environmental temperatures may lead to increases in energy consumption. Consequently, energy consumption may not be taken as an indicator for determining compressor fouling. Instead, reductions in isentropic efficiencies under identical compression ratios and reductions in mass flow rate of the compressor under identical rotation speed are recommended as such indicators. (8 Figures, 1 Table, 12 References)
作者 谷思宇 李刚
出处 《油气储运》 CAS 北大核心 2016年第7期763-767,共5页 Oil & Gas Storage and Transportation
关键词 LM2500+ 燃气轮机 压气机 积垢 水洗 LM2500+, gas turbines, compressor, fouling, washing
  • 相关文献

参考文献12

  • 1HEYMANNS E, KAZMEIER F, SCHILD W, et al. Gas turbine axial compressor fouling: A unified treatment of its effects detection, and control[J]. International Journal of Turbo & Jet Engines, 1992, 9 (4): 311-334.
  • 2DIAKUNCHAK I S. Performance deterioration in industrial gas turbines[J]. Journal of Engineering for Gas Turbines and Power, 1992, 114(2): 161- 168.
  • 3徐鹏,曹云鹏,欧惠宇,李淑英.船用三轴燃气轮机气路故障建模与聚类诊断技术[J].中国舰船研究,2014,9(3):88-92. 被引量:7
  • 4ARETAKIS N, ROUMELIOTIS I, DOUMOURAS G, et al. Compressor washing economic analysis and optimization for power generation[J]. Applied Energy, 2012, 95 (2): 77-86.
  • 5MARTiN-ARAGON J, VALDES M. A method to determine the economic cost of fouling of gas turbine compressors[J]. Applied Thermal Engineering, 2014, 69 (S1-2) : 261- 266.
  • 6GOLSHAN H, ROGERS D, SAMOYLOVE Z. Comparison of degradation of two different gas turbine engines in natural gas :ompressor stations[C]. Calgary: Proceedings of the 2014 10th InternationaI Pipeline Conference, 2014:2014-33015.
  • 7EFFIOM S O, ABAM F I, OHUNAKIN O S. Performance modeling of industrial gas turbines with inlet air filtration system [J]. Case Studies in Thermal Engineering, 2015 (5): 160-167.
  • 8纪星星,顾春伟,刘红,李朝坤.某三轴MW级燃气轮机热力循环计算的建模及验证[J].工程热物理学报,2013,34(11):2015-2019. 被引量:4
  • 9TURAN O, AYDIN H. Exergetic and exergo-economic analyses of an aero-derivative gas turbine engine[J ]. Energy, 2014, 74 ( 5 ): 638 -650.
  • 10MEMON A G, HARIJAN K, UQAILI M A, et al. Thermo- environmental and economic analysis of simple and regenerative gas turbine cycles with regression modeling and optimization[ J 1. Energy Conversion & Management, 2013, 76: 852-864.

二级参考文献25

  • 1LI Xiaotang, HOU Lingyun, YANG Min, et al. Modern Gas Turbine Technology [M]. Beijing: Aviation Industry Press, 2006:89 94.
  • 2Flack R. Component Matching Analysis for a Power Gen- eration Gas Turbine: Classroom Application [C]// Pro- ceedings of ASME Turbo Expo 2002, GT-2002-30155: 859-866.
  • 3Qusai Z A, Munzer S Y. Modeling and Simulation of a Gas Turbine Engine for Power Generation [J]. Journal of Engineering for Gas Turbines and Power, 2006, 128(2): 302 311.
  • 4Arthur W G, Summer A, William B, et al. Analysis of the Performance of a Jet Engine from Characteristics of the Components II-Interaction of the Components as Deter- mined From Engine Operation [R]. NACA TN No.1701, 1948.
  • 5ZHAO Shihang. Gas Turbine Cycle and Performance [M]. Beijing: Tsinghua University Press, 1993:36- 40.
  • 6Palmer J R, YAN Chengzhong. Turbotrans a Program- ming Language for the Performance Simulation of Arbi- trary Gas Turbine Engines With Arbitrary Control Sys-tems [J]. International Journal of Turbo and Jet Engines, 1985, 2:19-28.
  • 7Flack R. Analysis and Matching of Gas Turbine Compo- nents [J]. International Journal of Turbo and Jet Engines, 1990, 7:217-226.
  • 8LI Peiyuan, GU Chunwei. Performance Analysis of Cen- trifugal Compressors in a MW-Level Gas Turbine [C]// Proceedings of Engineering Thermal Physics Conference. Harbin, 2012, No.122037.
  • 9JI Xingxing, GU Chunwei, ZENG Wei, et al. Performance Analysis of a MW-Level Gas Turbine Part 1: Turbine Characteristic [C]// Proceedings of Engineering Thermal Physics Conference. Wuhan, 2011, No.112018.
  • 10HOU Jianfei, JI Xingxing, mance Analysis of a Power GU Chunwei, et al. Perfor- Turbine in a MW-Level Gas rbine With a Variable Area Nozzle and an Asymmetri- cal Exhaust Nozzle [J]. Journal of Engineering for Thermal Energy and Power, 2012, 27(6): 643 648.

共引文献8

同被引文献86

引证文献12

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部