期刊文献+

钯掺杂对SnO_2纳米纤维气体传感器的线性化改性 被引量:2

Pd-doped SnO_2 Nanofibers Linea rized Modification of Gas Sensor
下载PDF
导出
摘要 采用静电纺丝法制备了钯掺杂的SnO_2纳米纤维,通过X射线衍射仪(XRD)、扫描电镜(SEM)、X射线能谱仪(EDS)对其进行了物相分析、形貌观察和表面元素分布分析。钯掺杂SnO_2纤维粉体仍为四方相金红石结构,结晶度有所下降,晶粒减小。将此纤维粉体涂布于带加热丝的陶瓷管制成气体传感元件并在气相色谱仪上进行了流动态气敏性能测试。该传感器对变压器油中溶解故障特征气体的灵敏度降低,但是除H_2外线性响应范围明显增加。 Palladium doped SnO2 nanofibers were prepared by electrospinning method and phase analysis, morphology observation and surface elemental distribution were conducted by X ray diffraction (XRD), Scanning Electron Microscope (SEM) and Energy Dispersive Spectrometer (EDS) respectively. Pd-doped SnO2 fiber powder is still in tetragonal rutile structure with decreased crystallinity and grain size. The fiber powder is coated on a ceramic tube with heating wire to form a gas sensing element and its fluidic gas sensing performance were tested on gas chromatograph. The sensitivity of the sensor for gases dissolved in transformer oil was reduced, but the linear response range of the sensor is significantly increased except for H2.
出处 《广东化工》 CAS 2016年第14期1-3,12,共4页 Guangdong Chemical Industry
关键词 静电纺丝 钯掺杂SnO2 线性化 electrospinningmethod: Pd-doped SnO2 linearization
  • 相关文献

参考文献15

  • 1Rani J R, Oh J, Park J E, et al. Controlling the luminescence emission from palladium grafted graphene oxide thin films via reduction[J]. Nanoscale, 2013, 5(12): 5620-5627.
  • 2Ji H, Liu X, Wang X, et al. Self-assembled SnO2 colloidal particles and their gas sensing performance to H2, C2HsOH and LPG[J]. Journal of Wuhan University of Technology-Mater Sci Ed, 2011, 26(4): 661-667.
  • 3Wang D, Hu P, Xu J, et al. Fast response chlorine gas sensor based on mesoporous SnO2[J]. Sensors and Actuators B: Chemical, 2009, 140(2): 383-389.
  • 4Nakla W, Wisitsora-at A, Tuantranont A, et al. H2S sensor based on SnO2 nanostmctured film prepared by high current heating[J]. Sensors and Actuators B: Chemical, 2014, 203: 565-578.
  • 5Phan D T, Chung G S. A novel nanoporous Pd-graphene hybrid synthesized by a facile and rapid process for hydrogen detection[J]. Sensors and Actuators B: Chemical, 2015, 210: 661-668.
  • 6Liu L, Guo C, Li S, et al. Improved H2 sensing properties of Co-doped SnOz nanofibers[J]. Sensors andActuatorsB: Chemical, 2010, 150(2): 806-810.
  • 7Qi Q, Zhang T, Zheng X, et al. Electrical response of Sm203-doped SnO2 to C2H2 and effect of humidity interference[J]. Sensors and Actuators B: Chemical, 2008, 134(1): 36-42.
  • 8Shi S, Liu Y, Chen Y, et al. Ultrahigh ethanol response ofSnO2 nanorods at low working temperature arising l~om La203 loading[J]. Sensors and Actuators B: Chemical, 2009, 140(2): 426-431.
  • 9Zhou X, Fu W, Yang H, et al. Synthesis and ethanol-sensing properties of flowerlike SnO2 nanorods bundles by poly(ethylene glycol)-assisted hydrothermal process[J]. Materials Chemistry and Physics, 2010, 124(1): 614-618.
  • 10Zhu S, Zhang D, Gu J, et al. Biotemplate fabrication of SnO2 nanotubular materials by a sonochemical method tbr gas sensors[J]. Journal of Nanoparticle Research, 2009, 12(4): 1389-1400.

共引文献5

同被引文献6

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部