期刊文献+

储氢合金对GAP基高能固体推进剂性能的影响 被引量:2

Influence of hydrogen storage alloy on performance of GAP-based high energy solid propellant
下载PDF
导出
摘要 在聚叠氮缩水甘油醚(GAP)基固体推进剂体系中,采用储氢合金取代不同含量的微米级铝粉,获得无孔的高能固体推进剂。采用扫描电镜表征了含储氢合金的GAP基固体推进剂的微观形貌,采用药块分别测试了推进剂的安全、力学、静态燃烧性能和爆热,并采用BSFΦ75发动机测试了动态燃烧性能。结果表明,含储氢合金药块的密度比原配方的密度略低,内部结合更紧密。一定含量的储氢合金不影响原配方的安全性能和力学性能,可提高原配方的动、静态燃速。随着储氢合金质量分数从9%增加至18%(全部取代微米级铝粉),推进剂的静态燃速无明显变化。 The non-porous high energy solid propellants were obtained by replacing different content of micron grade aluminum powder with the hydrogen storage alloy in the glycidyl azido polyether (GAP)-based solid propellant systems. The microscopic morphology of GAP-based solid propellant containing hydrogen storage alloy was characterized by using scanning electron microscope. The safety performance, mechanical performance, static combustion performance and detonation heat of the propellant were tested respectively by using the propellant block.The dynamic combustion performance was tested by using BbFФ75 motor, lne results snow that the density of the propellant block containing certain amount hydrogen storage alloy is slightly less than that of the original formulation, its inner bonding is more close. A certain amount of hydrogen storage alloys do not affect safety performance and mechanical performance of the original formulation, and can increase the dynamic and static burning rates of the original formulation. The static burning rate of the propellant has no significant change with the mass fraction of the hydrogen storage alloy increasing from 9% to 18% (completely replacing micron grade aluminum powder).
出处 《化学推进剂与高分子材料》 CAS 2016年第4期73-76,83,共5页 Chemical Propellants & Polymeric Materials
基金 航天支撑项目(NO.617010406)
关键词 高能固体推进剂 储氢合金 安全性能 力学性能 燃烧性能 high energy solid propellant hydrogen storage alloy safety performance mechanical performance combustion performance
  • 相关文献

参考文献24

  • 1GUERY J F,CHANG I S,SHIMADA T,et al.Solid propulsion for space applications:An updated roadmap[J].Acta Astronautica,2010,66(1):201-219.
  • 2JAYARAMAN K,CHAKRAVARTHY S R,SARATHI R.Behavior of nano-aluminum in solid propellant combustion:AIAA 2008-5257[R],2008.
  • 3BABUK V,DOLOTKAZIN I,GAMSOV A,et al.Nanoaluminum as a solid propellant fuel[J].Journal of Propulsion and Power,2009,25(2):482-489.
  • 4高东磊,张炜,朱慧,刘香翠.纳米铝粉在复合推进剂中的应用[J].固体火箭技术,2007,30(5):420-423. 被引量:26
  • 5李伟,包玺,唐根,吴芳,徐海元,刘丽兵,郭翔,庞爱民.纳米铝粉在高能固体推进剂中的应用[J].火炸药学报,2011,34(5):67-70. 被引量:14
  • 6SAKINTUNA B,LAMARI-DARKRIM F,HIRSCHER M.Metal hydride materials for solid hydrogen storage:A review[J].International Journal of Hydrogen Energy,2007,32(9):1 121-1 140.
  • 7杨燕京,赵凤起,仪建华,罗阳.储氢材料在高能固体火箭推进剂中的应用[J].火炸药学报,2015,38(2):8-14. 被引量:21
  • 8DELUCA L T,GALFETTI L,SEVERINI F,et al.Physical and ballistic characterization of AlH_3-based space propellants[J].Aerospace Science and Technology,2007,11(1):18-25.
  • 9KEMPA P B,THOME V,HERRMANN M.Structure,chemical and physical behavior of aluminum hydride[J].Part Part Syst Charact,2009,26:132-137.
  • 10VAJEESTON P,RAVINDRAN P,FJELLVAG H.Stability enhancement by particle size reduction in AlH_3[J].Journal of Alloys and Compounds,2011,509:662-666.

二级参考文献128

共引文献142

同被引文献13

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部