期刊文献+

一类p(x)-Laplace方程解的存在性研究

Existence of Solution for a Class of Equation
下载PDF
导出
摘要 在光滑有界区域Ω奂RN上,讨论了具有Dirichlet边值条件的一类p(x)-Laplace方程解的存在性.在问题的研究过程中,通过利用LP(x)(Ω)空间,W1,P(x)(Ω)空间的一些相关理论及带有PS条件的Mountain Pass引理,给出了解存在性的一个充分条件,对原有结论进行了一个有意义的推广. In this paper, the existence of solution for a class of p(x)-Laplace equation with Dirichlet boundary value was discussed. An existence result which generalized the work of G. A. Afrouzi independing on the spaces of LP(x)(Ω) ,W1P(x) (Ω) and the Mountain Pass Lemma was obtained.
作者 孙健 刘辉昭
出处 《广东技术师范学院学报》 2016年第8期1-3,共3页 Journal of Guangdong Polytechnic Normal University
关键词 P(X)-LAPLACE方程 PS条件 MOUNTAIN Pass引理 p(x)-Laplace equation PS condition Mountain Pass Lemma
  • 相关文献

参考文献5

  • 1Xian ling Fan, Qi Hu Zhang. Existence of solutions for p(x) -Laplacian Dirichlet probolem [J]. Nonlinear Analysis, 200 3,52: 1843-1852.
  • 2Fan X L, Shen J, Zhao D. Sobolev Embeding Theorems for spaces [J]. Math Anal Appl, 2001, 262(2):749-760.
  • 3范先令,赵元章,张启虎.p(x)-Laplace方程的强极大值原理[J].数学年刊(A辑),2003,24(4):495-500. 被引量:6
  • 4Wang X, Zhao L, Zhao P H. Combined effects of singular and critical nonlinearities in elliptic problems[J]. Nonlinear Analysis: Theory, Method & Applications, 2013, 87:1-10.
  • 5G. A . Afrouzi, On positive mountain pass solutions for a semilinear elliptic boundary value problem [J]. Applied Mat hematics and Computation. 2005, 167: 76-80.

二级参考文献13

  • 1Zhikov, V. V., Averaging of functionals of the calculus of variations and elasticity theory[J], Math. USSR. Izv., 29(1987), 33-36.
  • 2Marcellini, P., Regularity and existence of solutions of elliptic equations with p, q-growth conditions [J], J. Diff. Zqu., 90(1991), 1-30.
  • 3Fan, X. L. & Zhao, D., A class of De Giorgi type and HSlder continuity [J], Nonlinear Anal., 36(1999), 295-318.
  • 4Fan, X. L. & Zhao, D., The quasi-minimizer of integral functionals with m(x)-growth conditions [J], Nonlinear Anal., 39:7(2000), 807-816.
  • 5Pratter, M. & Weinberger, H. F., Maximum principles in differential equations [M],Prentice Hall, Englewood Cliffs, N J, 1967.
  • 6Trudinger, N. S., On Harnack type inequahties and their application to quasi-hnear elliptic equations [J], Comm. Pure Appl. Math., 20(1967), 721-747.
  • 7Vazqucz, J. L., A strong maximum principle for some quasilinear elliptic equations [J],Appl. Math. Optim., 12(1984), 191-202.
  • 8Heinonen, J., Kilpelainen, T. & Martio, O., Nonlinear potential theory of degenerate elliptic equations [M], Clarendon Press, Oxford 1993.
  • 9Garcia-Melian, J. & Sabina de Lis, J., Maximum and comparison principles for operators involving the p-Laplacian [J], J. Math. Anal. Appl., 218(1998), 49-65.
  • 10Montenegro, M., Strong maximum principles for super-solutions of quasilinear elliptic equations [J], Nonlinear Anal., 37(1999), 431-448.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部