期刊文献+

大数据环境下安全海量规则分析技术研究

Research on Network Security Analysis Technique of Massive Rules in the Age of Big Data
下载PDF
导出
摘要 大数据环境下异构的网络安全设备会产生海量的安全事件,本文针对大数据具有的数据量巨大、查询分析复杂的特点,分析面向大数据的网络安全海量规则分析处理的相关技术,提出对各类数据源进行清洗整合,通过安全事件的关联分析,对安全规则建立描述模型,提出安全事件海量规则的模糊等量约束的因果关联算法和时空同现模式挖掘安全事件的规则间关联算法. In the age of Big Data, we should consider large-scale, heterogeneous network security behavior. In this paper, according to the features of huge amount and complex, Big Data analysis technologies for network security massive rules were proposed. Various types of heterogeneous data sources by data cleaning were analysised. The key data through security event correlation and spatiotemporal co-occurrence pattern mining security event correlation rules were proposed.
作者 刘兰 林军
出处 《广东技术师范学院学报》 2016年第8期41-45,共5页 Journal of Guangdong Polytechnic Normal University
基金 国家自然科学基金(61571141) 2015年广东省教育厅本科高校教学质量与教学改革工程项目(粤教[2015]133号网络工程专业综合改革)
关键词 大数据 关联分析 规则 时空同现 Big Data Correlation Analysis Rule Spatiotemporal co-occurrence
  • 相关文献

参考文献6

  • 1王元卓,靳小龙,程学旗.网络大数据:现状与展望[J].计算机学报,2013,36(6):1125-1138. 被引量:714
  • 2Bahadori M T, Liu Y, Zhang D. Learning with minimum supervision: a general framework for transductive transfer learning. IEEE International Conference on Data Mining (1CDM),2011.
  • 3Shahreza S, Ganjali Y. FleXam: Flexible Sampling Exten- sion for Monitoring and Security Applications in OpenFlow [C]. HotSDN.2013:167-168.
  • 4Zhitang Li, Binbin Wang, Dong Li, Hao Chen, Feng Liu, ZhengBin Hu. The Aggregation and Stability Analysis of Network Traffic for Structured-P2P-based Botnet Detection [J]. Journal of Networks.2010, 5(5):517-526.
  • 5刘兰,林军,蔡君.面向大数据的异构网络安全监控及关联算法研究[J].电信科学,2014,30(7):84-89. 被引量:19
  • 6Lan Liu, Xiaoping Xu etc. A kind of fuzzy constraint correlation algorithm based on prerequisites and consequences of security event. In: Proceedings of IEEE International Computer and Information Technology. 2009 (10):225-229.

二级参考文献72

  • 1刘兰,李之棠,李家春,梅成刚.基于异构系统的统一网络安全监控体系模型[J].小型微型计算机系统,2006,27(9):1682-1686. 被引量:7
  • 2Big data. Nature, 2008, 455(7209): 1-136.
  • 3Dealing with data. Science,2011,331(6018): 639-806.
  • 4Holland J. Emergence: From Chaos to Order. RedwoodCity,California: Addison-Wesley? 1997.
  • 5Anthony J G Hey. The Fourth Paradigm: Data-intensiveScientific Discovery. Microsoft Research, 2009.
  • 6Phan X H, Nguyen L M,Horiguchi S. Learning to classifyshort and sparse text Web with hidden topics from large-scale data collections//Proceedings of the 17th InternationalConference on World Wide Web. Beijing, China,2008:91-100.
  • 7Sahami M, Heilman T D. A web-based kernel function formeasuring the similarity of short text snippets//Proceedingsof the 15th International Conference on World Wide Web.Edinburgh, Scotland, 2006: 377-386.
  • 8Efron M, Organisciak P,Fenlon K. Improving retrieval ofshort texts through document expansion//Proceedings of the35th International ACM SIGIR Conference on Research andDevelopment in Information Retrieval. Portland, OR, USA,2012: 911-920.
  • 9Hong L,Ahmed A, Gurumurthy S,Smola A J, Tsioutsiou-liklis K. Discovering geographical topics in the twitterstream//Proceedings of the 21st International Conference onWorld Wide Web(WWW 2012). Lyon, France, 2012:769-778.
  • 10Pozdnoukhov A,Kaiser C. Space-time dynamics of topics instreaming text//Proceedings of the 3rd ACM SIGSPATIALInternational Workshop on Location-Based Social Networks.Chicago-IL,USA, 2011: 1-8.

共引文献731

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部