期刊文献+

基于点击反馈模型的内容推荐算法研究(英文) 被引量:3

Research on content recommendation algorithm based on click feedback model
下载PDF
导出
摘要 内容消费性平台优化页面内容的排序具有十分重要的意义。分析捕捉用户在页面浏览时的点击和反馈行为,以用户的兴趣标签与点击内容的主题匹配定义用户的正向点击和反向点击,以用户对内容的偏好评价定义反馈,以逻辑回归模型为基准抽取用户历史的数据进行回归分析,用户实时的点击和反馈行为对内容推荐流中数据进行重排序。以Epinion数据集作为测试数据集,实验结果表明:新的算法比单一采用逻辑回归模型能更为明显地提升数据AUC。 To optimize the ranking of the page content for content consumption platform is very important.The users' clicks and feedback behavior when they are reviewing pages were analyzed and captured and the user' s forward and reverse click were defined and matched on their interest label and the theme of their click content.We defined the feedback on the user' s preference for content and had regression analysis of extracting the user' s history data based on logistic regression model,and we reordered the in the content recommendation flow by user clicks and feedback of real-time behavior.Taking Epinion data set as the testing data set,the experimental results show that the new algorithm can improve the data AUC more significantly than the single use of logistic regression model.
作者 石慧霞
出处 《机床与液压》 北大核心 2016年第12期129-135,共7页 Machine Tool & Hydraulics
基金 supported by National Science and Technology Support Program (71102065) Chongqing Basic Science and Research Project in Cutting-Edge Technologies (cstc2015jcyjA40049) Chongqing Municipal Education Committee Science and Technology Project Support Program (KJ1403209)
关键词 点击和反馈 内容推荐 逻辑回归 重排序 AUC Click and feedback Content recommendation Logistic regression Reorder AUC
  • 相关文献

参考文献1

二级参考文献76

  • 1Cranshaw J, Toch E, Hong J, et al. Bridging the gap between physical location and online social networks// Proceedings of the 12th ACM International Conference on Ubiquitous Computing ( UbiComp 2010 ). Copenhagen, Denmark, 2010:119-128.
  • 2Yadav M S, Valck K D, Hennig-Thurau T, Hoffman D L. Social commerce: A contingency frameworks for assessing marketing potential. Journal of Interactive Marketing, 2013, 27(4) : 311-323.
  • 3Sarwat M, Eldawy A, Mokbel M F, Riedl J. PLUTUS: Leveraging location-based social networks to recommend potential customers to venues//Proceedings of the 14th International Conference on Mobile Data Managemant (MDM 2013). Milan, Italy, 2013:26-35.
  • 4Qu Y, Zhang J. Trade area analysis using user generated mobile location data//Proceedings of the 22nd International Conference on World Wide Web (WWW 2013). Rio de Janeiro, Brazil, 2013:1053-1064.
  • 5Stewart K, Glanville J L, Bennett D A. Exploring spatiotem- poral and social network factors in community response to major flood disaster. The Professinonal Geographer, 2014, 66(3) : 421-435.
  • 6Gao H, Barbier G, Goolsby R. Harnessing the crowd sourcing power of social media for disaster relief. IEEE Intelligent Systems, 2011, 26(3): 10-14.
  • 7Bahir E, Peled A. Identifying and tracking major events using geo-social networks. Social Science Computer Review, 2013, 31(4): 458-470.
  • 8McArdle G, Lawlor A, Furey E, Pozdnoukhov A. City-scale traffic simulation from digital footprints//Proceedings of the ACM SIGKDD International Workshop on Urban Computing (UrbComp 2012). Beijing, China, 2012:47-54.
  • 9Liang Y, CaverIee J, Cheng Z, Kameth K Y. How big is the crowd ? Event and location based population modeling in social media//Proceedings of the 24th ACM Conference on Hypertext and Social Media (HT2013). Paris, France, 2013:99-108.
  • 10Caverlee J, Cheng Z, Sui D Z, Kamath K Y. Towards geo-social intelligence: Mining, analyzing, and leveraging geospatial footprints in social media. IEEE Data Engineering Bulletin, 2013, 36(3): 33-41.

共引文献59

同被引文献25

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部